[发明专利]基于KNN-SVR的海底管道漏磁数据缺失插补方法有效

专利信息
申请号: 201711068452.3 申请日: 2017-11-03
公开(公告)号: CN107842713B 公开(公告)日: 2019-04-05
发明(设计)人: 刘金海;张化光;冯健;马大中;汪刚 申请(专利权)人: 东北大学
主分类号: F17D5/02 分类号: F17D5/02
代理公司: 沈阳优普达知识产权代理事务所(特殊普通合伙) 21234 代理人: 张志伟
地址: 110169 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明的基于KNN‑SVR的海底管道漏磁数据缺失插补方法,包括步骤1:从不含缺失点的原始漏磁数据中分割出特征数据块构成完备数据集,构建完备数据集的KD树;步骤2:对含缺失点的漏磁数据进行范化处理,获得由待插补数据块构成的待插补数据集,对待插补数据集进行补零处理;步骤3:在完备数据集中搜索待插补数据块的K近邻,获得K个完备数据块;步骤4:基于K个完备数据块,构建训练集,对训练集进行归一化处理;步骤5:利用支持向量回归机对训练集进行训练;步骤6:预测待插补数据块中的缺失特征值。本发明将基于欧式距离的KNN算法与SVR算法相结合,提高了预测准确度,减少了过拟合问题,同时对于信号噪声具有较好的鲁棒性。
搜索关键词: 基于 knn svr 海底 管道 数据 缺失 方法
【主权项】:
1.一种基于KNN‑SVR的海底管道漏磁数据缺失插补方法,其特征在于,包括以下步骤:步骤1:从不含缺失点的原始漏磁数据中分割出特征数据块构成完备数据集,构建完备数据集的KD树;步骤2:对含缺失点的漏磁数据进行范化处理,以获得由待插补数据块构成的待插补数据集,并对待插补数据集进行补零处理;步骤3:在完备数据集中搜索待插补数据块的K近邻,获得K个完备数据块;步骤4:基于K个完备数据块,构建训练集,对训练集进行归一化处理;步骤5:利用支持向量回归机对训练集进行模型训练;步骤6:预测待插补数据块中的缺失特征值,完成对缺失数据的插补。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711068452.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top