[发明专利]一种基于文本-图像生成对抗网络模型的多尺度卷积核方法有效
申请号: | 201711124737.4 | 申请日: | 2017-11-14 |
公开(公告)号: | CN107886169B | 公开(公告)日: | 2021-02-12 |
发明(设计)人: | 周智恒;李立军;黄俊楚 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06K9/62 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 李斌 |
地址: | 511458 广东省广州市*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于文本‑图像生成对抗网络模型的多尺度卷积核方法,包括以下步骤:S1、构造文本‑图像生成对抗网络模型;S2、利用深度卷积神经网络充当生成器、判别器的功能;S3、对文本进行编码之后与随机噪声结合,输入至生成器中;S4、在文本‑图像生成对抗网络模型中利用多尺度卷积对图像进行卷积操作;S5、将多尺度卷积操作得到的损失函数输入生成器进行后续训练。本方法构建的文本‑图像生成对抗网络模型,通过多尺度卷积改变判别器、生成器接收图片后的卷积方式,从原来的针对单层图像通道只使用1个卷积核的操作转变为同时采用多个卷积核,使得整个网络能够在对单层图像通道卷积时学习到更多特征,提高了网络训练的效率。 | ||
搜索关键词: | 一种 基于 文本 图像 生成 对抗 网络 模型 尺度 卷积 方法 | ||
【主权项】:
一种基于文本‑图像生成对抗网络模型的多尺度卷积核方法,其特征在于,所述的多尺度卷积核方法包括下列步骤:S1、构造文本‑图像生成对抗网络模型,生成器通过生成图像输入至判别器进行网络训练;S2、利用深度卷积神经网络充当生成器、判别器的功能;S3、对文本进行编码之后与随机噪声结合,输入至生成器中;S4、在文本‑图像生成对抗网络模型中利用多尺度卷积对图像进行卷积操作;S5、将多尺度卷积操作得到的损失函数输入生成器进行后续训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711124737.4/,转载请声明来源钻瓜专利网。
- 上一篇:石墨烯的制造方法
- 下一篇:制造基面侧向尺寸大于50纳米的石墨烯的方法
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序