[发明专利]一种基于文本-图像生成对抗网络模型的多尺度卷积核方法有效

专利信息
申请号: 201711124737.4 申请日: 2017-11-14
公开(公告)号: CN107886169B 公开(公告)日: 2021-02-12
发明(设计)人: 周智恒;李立军;黄俊楚 申请(专利权)人: 华南理工大学
主分类号: G06N3/08 分类号: G06N3/08;G06K9/62
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 李斌
地址: 511458 广东省广州市*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于文本‑图像生成对抗网络模型的多尺度卷积核方法,包括以下步骤:S1、构造文本‑图像生成对抗网络模型;S2、利用深度卷积神经网络充当生成器、判别器的功能;S3、对文本进行编码之后与随机噪声结合,输入至生成器中;S4、在文本‑图像生成对抗网络模型中利用多尺度卷积对图像进行卷积操作;S5、将多尺度卷积操作得到的损失函数输入生成器进行后续训练。本方法构建的文本‑图像生成对抗网络模型,通过多尺度卷积改变判别器、生成器接收图片后的卷积方式,从原来的针对单层图像通道只使用1个卷积核的操作转变为同时采用多个卷积核,使得整个网络能够在对单层图像通道卷积时学习到更多特征,提高了网络训练的效率。
搜索关键词: 一种 基于 文本 图像 生成 对抗 网络 模型 尺度 卷积 方法
【主权项】:
一种基于文本‑图像生成对抗网络模型的多尺度卷积核方法,其特征在于,所述的多尺度卷积核方法包括下列步骤:S1、构造文本‑图像生成对抗网络模型,生成器通过生成图像输入至判别器进行网络训练;S2、利用深度卷积神经网络充当生成器、判别器的功能;S3、对文本进行编码之后与随机噪声结合,输入至生成器中;S4、在文本‑图像生成对抗网络模型中利用多尺度卷积对图像进行卷积操作;S5、将多尺度卷积操作得到的损失函数输入生成器进行后续训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711124737.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top