[发明专利]人脸图像处理方法、系统及服务器有效
申请号: | 201711131120.5 | 申请日: | 2017-11-15 |
公开(公告)号: | CN107944363B | 公开(公告)日: | 2019-04-26 |
发明(设计)人: | 杨帆;张志伟 | 申请(专利权)人: | 北京达佳互联信息技术有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京市立方律师事务所 11330 | 代理人: | 刘延喜 |
地址: | 100084 北京市海淀区*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例公开了一种人脸图像处理方法、装置及服务器,包括下述步骤:获取待分类的人脸图像;将所述人脸图像输入到构建有损失函数的卷积神经网络模型中,所述损失函数对所述卷积神经网络模型输出的待分类数据进行系数松弛化处理,以增大所述待分类数据的分类界面;获取所述卷积神经网络模型输出的分类数据,并根据所述分类数据对所述人脸图像进行内容理解。在对人脸图像进行分类之前,将卷积神经网络模型提取的人脸图像的待分类数据特征进行系数松弛化处理,采用系数松弛化处理能够在更加严苛的条件下训练卷积神经网络模型,使分类边界明显增大,因此使卷积神经网络模型对内容理解精准度大大提高。 | ||
搜索关键词: | 图像 处理 方法 系统 服务器 | ||
【主权项】:
1.一种人脸图像处理方法,其特征在于,包括下述步骤:获取待分类的人脸图像;将所述人脸图像输入到构建有损失函数的卷积神经网络模型中,所述损失函数对所述卷积神经网络模型输出的待分类数据进行系数松弛化处理,以增大所述待分类数据的分类界面,其中,所述系数松弛化处理具体包括对所述卷积神经网络模型全连接层输出的待分类数据进行同比例缩小处理,以增大所述待分类数据的分类界面,所述卷积神经网络模型采用的损失函数为Softmax的交叉熵损失函数;获取所述卷积神经网络模型输出的分类数据,并根据所述分类数据对所述人脸图像进行内容理解;所述卷积神经网络模型的正向传播的特征描述为:L=log(pi)定义函数:![]()
所述卷积神经网络模型的反向传播的特征描述为:
定义函数:![]()
其中,i表示输入图像本身所属的类别,j表示与i不同类别的分类类别,t表示与i不同类别的分类类别,k表示系数松弛化参数,f(x)表示卷积神经网络模型提取的人脸特征,wi表示第i类别的权值,wj表示第j类别的权值,wt表示第t类别的权值,N表示为分类的类别数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京达佳互联信息技术有限公司,未经北京达佳互联信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711131120.5/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序