[发明专利]一种基于深度卷积神经网络的时空卫星图像融合方法有效

专利信息
申请号: 201711180763.9 申请日: 2017-11-23
公开(公告)号: CN107945146B 公开(公告)日: 2021-08-03
发明(设计)人: 宋慧慧;孙毅堂;刘青山;王国杰;张开华 申请(专利权)人: 南京信息工程大学
主分类号: G06T5/50 分类号: G06T5/50;G06T3/40;G06N3/04
代理公司: 南京钟山专利代理有限公司 32252 代理人: 戴朝荣
地址: 210044 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于深度卷积神经网络的时空卫星图像融合方法。所述基于深度卷积神经网络的时空卫星图像融合方法包括如下步骤:训练阶段:选取对应的Landsat图像和MODIS图像形成Landsat‑MODIS图像对,并对Landsat图像进行下采样,得到接近MODIS空间分辨率的LSR Landsat图像,根据Landsat图像、MODIS图像和LSR Landsat图像的组合进行训练,并分别得到非线性映射CNN网络和超分辨率重建CNN网络;预测阶段:分别选取日期t1和t3的Landsat‑MODIS图像对,基于训练阶段得到的非线性映射CNN网络和超分辨率重建CNN网络,预测位于日期t1和t3之间的日期t2的Landsat预测图像。
搜索关键词: 一种 基于 深度 卷积 神经网络 时空 卫星 图像 融合 方法
【主权项】:
一种基于深度卷积神经网络的时空卫星图像融合方法,其特征在于:包括如下步骤:训练阶段:选取对应的Landsat图像和MODIS图像形成Landsat‑MODIS图像对,并对Landsat图像进行下采样,得到接近MODIS空间分辨率的LSR Landsat图像,根据Landsat图像、MODIS图像和LSR Landsat图像的组合进行训练,并分别得到非线性映射CNN网络和超分辨率重建CNN网络;预测阶段:分别选取日期t1和t3的Landsat‑MODIS图像对,基于训练阶段得到的非线性映射CNN网络和超分辨率重建CNN网络,预测位于日期t1和t3之间的日期t2的Landsat预测图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711180763.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top