[发明专利]基于无向图与单层神经网络的中文分词方法有效

专利信息
申请号: 201711218709.9 申请日: 2017-11-28
公开(公告)号: CN107832307B 公开(公告)日: 2021-02-23
发明(设计)人: 夏睿;何声欢 申请(专利权)人: 南京理工大学
主分类号: G06F40/289 分类号: G06F40/289;G06F40/216;G06F16/35
代理公司: 南京理工大学专利中心 32203 代理人: 朱显国
地址: 210094 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于无向图与单层神经网络的中文分词方法,首先根据标注集,对给定的训练中文文本进行标注,统计其初始状态系数和状态转移系数;然后根据字典资源文件,对中文文本的每个字符依据其上下文进行特征抽取,得到文本特征;根据所有文本特征,构建特征函数集合,将文本特征转换特征向量;接着将特征向量送给单层神经网络训练分类器模型进行训练,直至模型收敛;再使用单层神经网络模型,对测试数据进行分类,根据统计的初始状态系数、状态转移系数,使用维特比算法进行最优标注序列的求解;最后将最优标注序列与测试原始文本结合,生成分词文本。本发明训练速度更快,消耗资源更少,泛化能力更强。
搜索关键词: 基于 单层 神经网络 中文 分词 方法
【主权项】:
基于无向图与单层神经网络的中文分词方法,其特征在于,包括以下步骤:步骤1、根据标注集,对给定的训练中文文本进行标注,统计其初始状态系数和状态转移系数;步骤2、根据字典资源文件,对中文文本的每个字符依据其上下文进行特征抽取,得到文本特征;根据所有文本特征,构建特征函数集合,将文本特征转换特征向量;步骤3、将步骤2得到的特征向量送给单层神经网络训练分类器模型进行训练,直至模型收敛;步骤4、使用步骤3得到的单层神经网络模型,对测试数据进行分类,根据步骤1统计的初始状态系数、状态转移系数,使用维特比算法进行最优标注序列的求解;步骤5、将步骤4得到的最优标注序列与测试原始文本结合,生成分词文本。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711218709.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top