[发明专利]基于深度学习的优化超声成像系统参数的方法有效

专利信息
申请号: 201711224993.0 申请日: 2017-11-24
公开(公告)号: CN109833061B 公开(公告)日: 2020-08-04
发明(设计)人: 张智伟;赵明昌;陆坚 申请(专利权)人: 无锡祥生医疗科技股份有限公司
主分类号: A61B8/00 分类号: A61B8/00
代理公司: 无锡市大为专利商标事务所(普通合伙) 32104 代理人: 曹祖良;屠志力
地址: 214028 江苏省无锡市新吴区新*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于深度学习的优化超声成像系统参数的方法,包括以下步骤:步骤1:收集用于训练神经网络的样本,样本包括超声图像样本I、以及采集这超声些图像样本时超声成像系统所使用的相应超声成像系统参数向量样本P;步骤2:建立神经网络模型并使用步骤1收集到的样本训练神经网络至收敛,得到训练好得神经网络系统onn;步骤3:以原始的超声成像系统参数向量p或者原始超声图像作为输入输入到步骤2训练好的神经网络系统onn中,此时从onn输出端获得的参数就是优化的超声成像系统参数向量ep=onn(p)。本发明实现通过优化超声成像系统参数来提高超声图像质量的目的。
搜索关键词: 基于 深度 学习 优化 超声 成像 系统 参数 方法
【主权项】:
1.一种基于深度学习的优化超声成像系统参数的方法,其特征在于,包括以下步骤:步骤1:收集用于训练神经网络的样本,样本包括超声图像样本I、以及采集这超声些图像样本时超声成像系统所使用的相应超声成像系统参数向量样本P;步骤2:建立神经网络模型并使用步骤1收集到的样本训练神经网络至收敛,得到训练好得神经网络系统onn;步骤3:以原始的超声成像系统参数向量p或者原始超声图像作为输入输入到步骤2训练好的神经网络系统onn中,此时从onn输出端获得的参数就是优化的超声成像系统参数向量ep=onn(p)。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于无锡祥生医疗科技股份有限公司,未经无锡祥生医疗科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711224993.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top