[发明专利]一种残缺汉字识别方法有效

专利信息
申请号: 201711256495.4 申请日: 2017-12-04
公开(公告)号: CN108038495B 公开(公告)日: 2021-08-20
发明(设计)人: 彭艺;尹玉梅 申请(专利权)人: 昆明理工大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/38
代理公司: 暂无信息 代理人: 暂无信息
地址: 650093 云*** 国省代码: 云南;53
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种残缺汉字识别方法,属于汉语信息处理技术领域。本发明通过中文点阵字库建立汉字特征数据库,对任意待检测残缺汉字通过现代扫描技术及汉字形状特征转化为图像,对其进行灰度化及二值化后提取汉字特征并生成特征向量,与数据库中现有汉字分别计算其基于余弦定理的字形相似度和基于欧氏距离的字形相似度,最后再通过相似融合算法及相似阈值判定,得到待检测残缺汉字的相似字集合。本发明与现有技术相比,主要解决了现有技术耗费人力且准确性欠佳等现象,致力于增加目前依靠计算机对残缺汉字进行识别的有效性和准确性。
搜索关键词: 一种 残缺 汉字 识别 方法
【主权项】:
1.一种残缺汉字识别方法,其特征在于,具体包括以下步骤:Step0:提取汉字特征并建立汉字特征数据库,根据15×16像素中文点阵字库,将点阵按照从左至右、从上至下的规则划分为40个2×3像素的小矩阵,记2×3像素小矩阵中汉字所占像素数为pi,i∈[1,40],观察所有pi,i∈[1,40]并生成该汉字所对应的汉字特征向量{p1,p2,…,p40},且将所有汉字及生成的汉字特征向量存入数据库,组建汉字特征数据库P:{P1,P2,…,PN};Step1:利用扫描技术及汉字形状特征,从汉字载体中提取出待检测残缺汉字X的图片,将图片以15:16的比例剪切至待检测残缺汉字X尽可能铺满图片为止,但要将其残缺汉字重心处于图片的中心,并留取合适的边距,生成待检测残缺汉字X的扫描图片Step2:将待检测残缺汉字X的扫描图片进行灰度化及二值化,将其按比例切割为15×16像素点所组成的矩阵形式,对每个像素点进行归一化,并以此规则生成待检测残缺汉字X的15×16像素点阵形式;Step3:将待检测残缺汉字X的15×16像素点阵,按照从左至右、从上至下的规则划分为40个2×3像素的小矩阵,记2×3像素小矩阵中残缺汉字所占像素数为pi,i∈[1,40],观察所有pi,i∈[1,40]并生成待检测残缺汉字X所对应的汉字特征向量X:{x1,x2,…,x40};Step4:将待检测残缺汉字X的汉字特征向量X:{x1,x2,…,x40},以及汉字特征数据库P中的汉字特征向量Pi:{p1,p2,…,p40},i∈[1,N]作为输入,由余弦定理计算公式(1)求得待检测残缺汉字X、目标汉字Pi之间基于余弦定理的字形相似度Sim1(X,Pi); Sim 1 ( X , P i ) = x 1 p 1 + x 2 p 2 + ... + x 40 p 40 x 1 2 + x 2 2 + ... + x 40 2 · p 1 2 + p 2 2 + ... + p 40 2 - - - ( 1 ) ]]>Step5:将待检测残缺汉字X的汉字特征向量X:{x1,x2,…,x40},以及汉字特征数据库P中的汉字特征向量Pi:{p1,p2,…,p40},i∈[1,N]作为输入,定义归一化参数δ,由欧氏距离计算公式(2)求得待检测残缺汉字X、目标汉字Pi之间基于欧氏距离的字形相似度Sim2(X,Pi); Sim 2 ( X , P i ) = δ δ + [ Σ t = 1 40 | x t - p t | 2 ] 1 2 - - - ( 2 ) ]]>Step6:设Step4、Step5步骤所计算出的相似度对应权值分别为α、β,权值α、β满足α+β=1的要求,由字形相似度Sim1(X,Pi)及权值α、字形相似度Sim2(X,Pi)及权值β,由相似度融合算法,即公式(3)计算出待检测残缺汉字X、目标汉字Pi之间的最终字形相似度Sim(X,Pi);Sim(X,Pi)=Sim1(X,Pi)·α+Sim2(X,Pi)·β (3)Step7:遍历汉字特征数据库P,对数据库中每个汉字Pi,i∈[1,N]都经Step4、Step5、Step6步骤,计算其与待检测残缺汉字X之间的字形相似度Sim(X,Pi),定义相似阈值θ,如果满足公式:Sim(X,Pi)≥θ的要求则将该汉字添加至相似字集合,最终导出待检测残缺汉字X的相似字集合S:{S1,S2,…,SM},其中M是与待检测残缺汉字X相似的汉字个数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711256495.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top