[发明专利]基于多层卷积神经网络的输电线路设备图像缺陷检测方法及系统在审

专利信息
申请号: 201711259925.8 申请日: 2017-12-04
公开(公告)号: CN108038846A 公开(公告)日: 2018-05-15
发明(设计)人: 张峰;李振宇;李路;郭锐;杨波;许玮;慕世友;李超英;傅孟潮;李建祥;赵金龙;王万国 申请(专利权)人: 国网山东省电力公司电力科学研究院;山东鲁能智能技术有限公司;国家电网公司
主分类号: G06T7/00 分类号: G06T7/00;G06T5/00;G06K9/62
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 董雪
地址: 250003 *** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于多层卷积神经网络的输电线路设备图像缺陷检测方法及系统,包括:对原始训练集图像进行模块化预处理,将模块化预处理后的图像送入多层卷积神经网络模型进行训练;对于模块化预处理后的图像,分别选择不同的训练集大小和训练参数,重复步骤2进行多次实验,并将分类准确率和效率进行对比分析,选出最优的训练参数并保存;通过基于环境结构和先验知识所构成的判别器进行过滤,更正误检与漏检信息,得到最终的图像缺陷检测结果。本发明有益效果:通过构建具有多层隐藏层的机器学习模型,从大量的数据中学习有价值的表现型特征,从而提升分类或者预测的准确性。
搜索关键词: 基于 多层 卷积 神经网络 输电 线路 设备 图像 缺陷 检测 方法 系统
【主权项】:
1.一种基于多层卷积神经网络的输电线路设备图像缺陷检测方法,其特征在于,包括:步骤1:对原始训练集图像进行模块化预处理,包括:形态学模块化处理、几何视角模块化处理和光照补偿模块化处理;步骤2:将模块化预处理后的图像送入多层卷积神经网络模型进行训练,经过信息融合和分类,得到输入图像的识别结果;步骤3:对于模块化预处理后的图像,分别选择不同的训练集大小和训练参数,重复步骤2进行多次实验,并将分类准确率和效率进行对比分析,选出最优的训练参数并保存;步骤4:对步骤2所得到的输入图像的识别结果,通过基于环境结构和先验知识所构成的判别器进行过滤,更正误检与漏检信息,得到最终的图像缺陷检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网山东省电力公司电力科学研究院;山东鲁能智能技术有限公司;国家电网公司,未经国网山东省电力公司电力科学研究院;山东鲁能智能技术有限公司;国家电网公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711259925.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top