[发明专利]一种基于深度学习的皮肤疾病检测方法以及系统有效
申请号: | 201711306341.1 | 申请日: | 2017-12-11 |
公开(公告)号: | CN107945173B | 公开(公告)日: | 2022-05-24 |
发明(设计)人: | 刘凯;吴志力;刘晓明 | 申请(专利权)人: | 深圳市宜远智能科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06V10/764;G06V10/82;G06V10/40;G06N3/04;G06N3/08 |
代理公司: | 深圳市顺天达专利商标代理有限公司 44217 | 代理人: | 郭伟刚 |
地址: | 518000 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的皮肤疾病检测方法以及系统,方法包括:将待检测皮肤的图片预处理后输入改进的Faster RCNN神经网络模型,该神经网络模型输出检测皮肤的疾病区域和疾病类型;其中,该神经网络模型使用深度宽度残差网络对输入的图片做特征提取,且提取后的特征图片作为疾病区域和疾病类型的共享特征实现两个优化目标同时学习,本发明可以更加有效的提升模型的性能,比基础的Faster RCNN的检测效果提升,适用于面部皮肤疾病检测以及其它部位的疾病检测或者非健康区域检测,可用于医疗行业和医学美容行业的各种疾病检测。 | ||
搜索关键词: | 一种 基于 深度 学习 皮肤 疾病 检测 方法 以及 系统 | ||
【主权项】:
一种基于深度学习的皮肤疾病检测方法,其特征在于,方法包括:将待检测皮肤的图片预处理后输入改进的Faster RCNN神经网络模型,该神经网络模型输出检测皮肤的疾病区域和疾病类型;其中,该神经网络模型使用深度宽度残差网络对输入的图片做特征提取,且提取后的特征图片作为疾病区域和疾病类型的共享特征实现两个优化目标同时学习。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市宜远智能科技有限公司,未经深圳市宜远智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711306341.1/,转载请声明来源钻瓜专利网。
- 上一篇:激光器外壳
- 下一篇:基于视频的高速路段能见度测算方法