[发明专利]一种面向GPU集群环境的避免GPU资源争用的方法有效

专利信息
申请号: 201711326972.X 申请日: 2017-12-13
公开(公告)号: CN107943592B 公开(公告)日: 2020-06-12
发明(设计)人: 东方;师晓敏;罗军舟;查付政;王睿;孙斌 申请(专利权)人: 中通服咨询设计研究院有限公司;东南大学
主分类号: G06F9/50 分类号: G06F9/50
代理公司: 江苏圣典律师事务所 32237 代理人: 胡建华;于瀚文
地址: 210019 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种面向GPU集群环境的避免GPU资源争用的方法,包括支持多应用程序细粒度并发执行的插件,应用程序行为特征抽取和应用程序任务调度。针对同一个NVIDIA GPU节点上运行的多个应用程序可能会引起的GPU资源争用问题,构建一个支持多应用程序细粒度并发执行的平台,使得多个应用程序在同一个GPU节点上可以尽可能的并发执行。其次,抽取每个应用程序的GPU行为特征,包括GPU使用模式和GPU资源需求信息。根据应用程序的GPU行为特征,以及当前GPU集群中各个GPU节点的资源使用状态,调度应用程序到适合的GPU节点上,从而最小化多个独立应用程序在同一个GPU节点上的资源争用。
搜索关键词: 一种 面向 gpu 集群 环境 避免 资源 方法
【主权项】:
一种面向GPU集群环境的避免GPU资源争用的方法,其特征在于,包括以下步骤:步骤1,构建一个支持多应用程序细粒度并发执行的插件:该插件包含一个自行编写的GPU运行时伪函数库和一个自行编写的本地服务器进程,GPU运行时伪函数库与NVIDIA自带的GPU运行时函数库有相同的函数原型,但各个函数实现体的基本功能包括:变换同步函数为异步函数;向本地服务器进程转发相关的函数执行请求;该细粒度并发执行插件的作用为:同一个GPU节点上的多个应用程序对GPU运行时库函数的调用,均需通过GPU运行时伪函数库变换、转发,并通过本地服务器进程执行;步骤2,在GPU集群的头结点,使用自行编写的GPU运行时伪函数库替换NVIDIA自带的GPU运行时函数库,该伪函数库将GPU内存创建类函数、GPU内存拷贝类函数、GPU内核执行函数、GPU同步类函数的函数体替换为相应函数的字符输出信息;当一个用户向GPU集群中的头结点提交待执行的GPU应用程序时,在GPU集群的头结点中运行该应用程序,即能够在避免真实运行的模式下,获得该应用程序运行过程中所需执行的GPU关键函数信息,从而获得该应用程序的GPU使用模式;另一方面,使用NVIDIA自带工具CUOBJDUMP、PTXAS,静态解析该应用程序中的GPU内核函数,能够抽取应用程序所需使用的GPU资源需求信息;步骤3,根据步骤2中的获取应用程序的GPU使用模式和GPU资源需求信息,以及当前GPU集群中各个GPU节点的资源使用状况,在GPU集群的头结点中,调度所到达的GPU应用程序到适宜的GPU节点上运行。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中通服咨询设计研究院有限公司;东南大学,未经中通服咨询设计研究院有限公司;东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711326972.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top