[发明专利]一种基于GAN网络深度学习模型的光流估计方法在审

专利信息
申请号: 201711386897.6 申请日: 2017-12-20
公开(公告)号: CN108122249A 公开(公告)日: 2018-06-05
发明(设计)人: 张智福;余思洋;陈捷;郭玉其 申请(专利权)人: 长沙全度影像科技有限公司
主分类号: G06T7/269 分类号: G06T7/269
代理公司: 暂无信息 代理人: 暂无信息
地址: 410205 湖南省长沙市高新开发*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于GAN网络深度学习模型的光流估计方法,属于图像处理领域。包括以下步骤:构建光流估计的深度学习数据集,构建GAN网络深度学习模型,该模型包括卷积模块,残差模块和反卷积模块,利用数据集对深度学习模型进行训练,得到训练完成的深度学习模型,直接将待估计光流的图像输入训练完成的深度学习模型,快速估计出光流图像。本发明的方法利用深度学习模型来自动学习光流图像的图像特征,进行端到端光流估计,无需估计运动边界进行辅助,而且所采用的GAN网络深度学习模型能够充分挖掘输入图像中的多维特征,可提升光流估计的效率和准确率。
搜索关键词: 光流估计 学习 光流 构建 网络 图像 图像处理领域 多维特征 估计运动 快速估计 输入图像 图像输入 图像特征 学习数据 自动学习 端到端 反卷积 数据集 准确率 残差 卷积 挖掘
【主权项】:
一种基于GAN网络深度学习模型的光流估计方法,其特征在于,包括以下步骤:步骤1:构建光流估计的深度学习数据集;步骤2:构建GAN网络深度学习模型,该模型包括卷积模块,残差模块和反卷积模块;步骤3:利用数据集对深度学习模型进行训练,得到训练完成的深度学习模型;步骤4:直接将待估计光流的图像输入训练完成的深度学习模型,快速估计出光流图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长沙全度影像科技有限公司,未经长沙全度影像科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711386897.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top