[发明专利]一种基于局部特征和深度学习的卡口车辆检索系统及方法有效
申请号: | 201711393924.2 | 申请日: | 2017-12-21 |
公开(公告)号: | CN108197538B | 公开(公告)日: | 2020-10-16 |
发明(设计)人: | 温晓岳;田玉兰;陈涛;李建元 | 申请(专利权)人: | 浙江银江研究院有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06F16/583 |
代理公司: | 杭州之江专利事务所(普通合伙) 33216 | 代理人: | 张慧英 |
地址: | 310030 浙江省杭*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于局部特征和深度学习的卡口车辆检索系统及方法,本发明利用基于深度神经网络来提取车辆全局特征,损失函数采用softmax损失和三元组损失函数的损失函数来训练网络模型,同时提取年检标特征和车灯特征,完成获取局部特征向量,最终加权结合局部特征向量和利用神经网络最后一层全连接层的全局特征向量作为车辆特征进行检索,检索采用改进的k‑means算法找出K类,然后利用SVM形成哈希函数来进行汉明码编码,提高了检索速度与检索精度,并节省存储空间。 | ||
搜索关键词: | 一种 基于 局部 特征 深度 学习 卡口 车辆 检索系统 方法 | ||
【主权项】:
1.一种基于局部特征和深度学习的卡口车辆检索方法,其特征在于,包括如下步骤:(1)获取卡口车辆图片并制作成卡口图片集,对卡口图片集进行处理得到数据集;(2)取数据集内的部分卡口图片作为训练样本集,利用深度神经网络模型提取车辆特征,采用softmax损失和三元组损失函数共同作为深度神经网络的损失函数,完成对网络模型的训练;(3)利用训练完成的网络模型对数据集提取车辆全局特征;(4)基于数据集进行车辆局部特征的提取,车辆局部特征包括年检标特征和车灯特征;(5)将车辆全局特征与车辆局部特征合并得到车辆加权特征,并将其作为车辆图片全局特征;(6)对车辆图片全局特征进行k‑means聚类分析,利用K个二分类SVM训练哈希函数,提取样本特征码后放入哈希桶中,从而建立基于SVM的哈希检索;(7)检索时将提取得到的待检测图片的车辆图片全局特征通过哈希函数转化为特征码,找到该特征码所对应的哈希桶并进行计算与排序,输出所对应的相似卡口图片。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江银江研究院有限公司,未经浙江银江研究院有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711393924.2/,转载请声明来源钻瓜专利网。