[发明专利]基于网络拓扑及长时序信息的配电网工况录波分类方法有效
申请号: | 201711404581.5 | 申请日: | 2017-12-22 |
公开(公告)号: | CN108154223B | 公开(公告)日: | 2022-04-15 |
发明(设计)人: | 姚蔷;张建良;戴义波 | 申请(专利权)人: | 北京映翰通网络技术股份有限公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G01R31/00 |
代理公司: | 北京金智普华知识产权代理有限公司 11401 | 代理人: | 巴晓艳 |
地址: | 100102 北京市朝阳*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基网络拓扑及长时序信息的配电网工况分类方法,所述方法包括:根据广域对时技术对各配电网监测点的工况录波的采集时间点对齐并截取出波形的公共区段,然后按不同配电网监测点的网络拓扑关系按顺序拼接;构建包含卷积层区域和长短时期记忆网络单元的多数据块输入深度神经网络框架,利用工况录波分类数据集对多数据块输入深度神经网络训练以获得最优多数据块输入深度神经网络工况分类器模型;将所述多个有效波形区域输入最优多数据块输入深度神经网络工况分类器模型以获得该工况录波的工况类型。 | ||
搜索关键词: | 基于 网络 拓扑 时序 信息 配电网 工况 分类 方法 | ||
【主权项】:
一种基于网络拓扑及长时序信息的配电网工况分类方法,其特征在于,所述配电网工况分类方法包括:对多个配电网监测点的工况录波进行波形拼接;对拼接后的波形进行预处理以获得多个有效波形区域;构建包含卷积层区域和长短时期记忆网络单元的多数据块输入深度神经网络框架,并根据该多数据块输入深度神经网络框架构建具有与其相同卷积层区域的单数据块输入深度神经网络框架;利用超参数生成器生成多个单数据块输入深度神经网络模型,使用工况录波分类数据集对该多个单数据块输入深度神经网络模型分别训练以获得最优单数据块输入深度神经网络模型,并从该最优单数据块输入深度神经网络模型中提取卷积层区域的结构及参数;利用该提取的卷积层区域的结构及参数初始化多数据块输入深度神经网络框架,利用超参数生成器生成多个多数据块输入深度神经网络模型,使用工况录波分类数据集对该多个多数据块输入深度神经网络模型分别训练以获得最优多数据块输入深度神经网络工况分类器模型;将所述多个有效波形区域输入最优多数据块输入深度神经网络工况分类器模型以获得工况类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京映翰通网络技术股份有限公司,未经北京映翰通网络技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711404581.5/,转载请声明来源钻瓜专利网。