[发明专利]一种基于变分组卷积的图像识别方法有效

专利信息
申请号: 201711419380.2 申请日: 2017-12-25
公开(公告)号: CN108009594B 公开(公告)日: 2018-11-13
发明(设计)人: 张弘;辛淼;张泽宇 申请(专利权)人: 北京航空航天大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 安丽
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于变分组卷积的图像识别方法,针对目前的基于深度卷积神经网络的图像识别算法中存在的过拟合问题,采用随机通道组合的思路,对于每个处理层,首先对输入特征图进行通道拆分,然后再进行通道组合排列,为每个卷积核分配不同的通道组合,最后计算该层的卷积激活特征图,本发明可以有效提高特征提取中的同层数据随机化程度,降低模型参数发生过拟合的可能性,从而提高卷积神经网络在图像检索、图像匹配等问题中的性能。
搜索关键词: 一种 基于 分组 卷积 图像 识别 方法
【主权项】:
1.一种基于变分组卷积的图像识别方法,其特征在于:包括以下步骤:第一步,对一张输入图像进行RGB通道拆分,每个通道作为初始的特征图,共3个特征图,作为初始输入;第二步,使用原始的5层AlexNet卷积神经网络,为每一层的m个卷积核,分配每个卷积核对应的1组卷积特征图;第三步,对各个卷积核和对应的不同数量,即变分组的特征图组计算二维卷积,得到本层的输出特征图,同时也是下一层的输入特征图,完成第一层的特征图计算,同样的过程依次完成第2层到第5层的输出特征图,将第5层的输出特征矩阵按行展开成一维向量,即得到输出特征,使用softmax函数对输出特征进行概率化映射,得到输出类别向量;第四步,使用均方误差计算AlexNet卷积神经网络模型的输出类别向量与输入图像的类别真值向量之间的损失值,通过误差反向传播算法更新AlexNet中卷积核的参数,即完成了对AlexNet卷积神经网络模型的一次更新,通过在imagenet数据集上进行训练,得到训练完的AlexNet卷积神经网络模型,最终使用训练完的AlexNet卷积神经网络模型对输入图像进行图像识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711419380.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top