[发明专利]一种基于已知数据回归的非高斯过程监测方法有效

专利信息
申请号: 201711456607.0 申请日: 2017-12-15
公开(公告)号: CN108170648B 公开(公告)日: 2021-05-18
发明(设计)人: 孟生军;童楚东;朱莹 申请(专利权)人: 宁波大学
主分类号: G06F17/18 分类号: G06F17/18
代理公司: 暂无信息 代理人: 暂无信息
地址: 315211 浙江省宁波*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于已知数据回归的非高斯过程监测方法,旨在将非高斯独立元成分转换为高斯分布的误差信息,以实现对非高斯过程对象实施精准的过程监测。具体来讲,本发明方法首先利用独立元分析(ICA)算法挖掘非高斯过程对象的独立元成分,然后在逐个假设变量数据缺失的条件下,利用已知数据回归(KDR)估计出独立元。最后,利用独立元估计误差实施基于主元分析模型的过程监测。一般而言,ICA算法能揭露出原始数据的本质,以ICA模型为基础通过KDR得到的估计误差是服从高斯分布的。而受益于误差的高斯分布特性,本发明方法所描述的正常区域更为精确,能显著提升传统ICA模型用于非高斯过程监测的故障检测能力。
搜索关键词: 一种 基于 已知 数据 回归 非高斯 过程 监测 方法
【主权项】:
1.一种基于已知数据回归的非高斯过程监测方法,其特征在于,包括以下步骤:

离线建模阶段的实施过程如下所示:

(1)收集生产过程正常运行状态下的数据样本,组成训练数据集X∈Rn×m,并对每个变量进行标准化处理,得到均值为0,标准差为1的新数据矩阵其中,n为训练样本数,m为过程测量变量数,R为实数集,Rn×m表示n×m维的实数矩阵;

(2)利用独立元分析(ICA)算法为建立相应的ICA模型:初始化变量下标号i=1,为d个独立成分列向量组成的矩阵,W∈Rm×d为分离矩阵,A∈Rm×d为混合矩阵,E∈Rn×m表示模型误差,上标号T表示矩阵或向量的转置;

(3)假设矩阵中第i列数据缺失,为不失一般性,可将矩阵表述成其中,为假设缺失的数据(实为矩阵中第i列),由矩阵中剩余的列组成,为已知数据;

(4)利用最小二乘的思路构建已知数据与独立元成分矩阵S之间的回归模型,即:

上式中,回归矩阵Ei∈Rn×d为独立元估计误差矩阵;

(5)对估计误差实施奇异值分解,即:

Ei=UiΛiViT           (2)

其中,Ui与Vi为酉矩阵,对角矩阵Λi实际上只包含了一个非零奇异值,这是因为rank(Ei)=1;因此,从误差Ei到向量Ui之间的变换矩阵为Θi=ViΛi‑1

(6)根据公式Ui=EiΘi计算出剔除冗余信息后的误差向量Ui,并判断是否满足条件i<m?若是,则置i=i+1后返回步骤(3);若否,则将得到的误差向量组成矩阵U=[U1,U2,…,Um]后继续执行下一步骤;

(7)利用PCA算法为包含独立元估计误差的矩阵U建立相应的PCA故障检测模型,保留模型参数集其中H∈Rm×k为载荷矩阵,A∈Rk×k为对角矩阵,与Qc分别为监测统计量的控制上限;

在线故障检测的实施过程如下所示:<

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宁波大学,未经宁波大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711456607.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top