[发明专利]基于深度学习的水质预测方法及系统有效
申请号: | 201711458163.4 | 申请日: | 2017-12-28 |
公开(公告)号: | CN108334977B | 公开(公告)日: | 2020-06-30 |
发明(设计)人: | 曲海平;吕志强 | 申请(专利权)人: | 鲁东大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06N3/04 |
代理公司: | 北京路浩知识产权代理有限公司 11002 | 代理人: | 王莹;吴欢燕 |
地址: | 264025 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于深度学习的水质预测方法及系统,该方法包括:获取待测水样的初始水质数据;将初始水质数据输入生成式对抗网络,获取初始水质预测值;对所述初始水质预测值进行散度处理;将散度处理后的初始水质预测值输入改进后的BP神经网络,将改进后的BP神经网络的期望输出作为优化预测值,并根据改进后的BP神经网络中的误差函数获得全局误差,基于优化预测值、全局误差、预设误差范围和预设次数,获得所述待测水样的最优水质预测值。本发明通过建立一个拥有生成式对抗网络层和一层BP神经网络层的深度网络,提取数据源的深度特征,形成初始化数据,接着进行BP神经网络的优化分析,最终得到更加准确的水质环境预测数据。 | ||
搜索关键词: | 基于 深度 学习 水质 预测 方法 系统 | ||
【主权项】:
1.一种水质预测方法,其特征在于,包括:S1,获取待测水样的初始水质数据;S2,将所述初始水质数据输入生成式对抗网络,获取初始水质预测值;S3,对所述初始水质预测值进行散度处理;S4,将散度处理后的初始水质预测值输入改进后的BP神经网络,将改进后的BP神经网络的期望输出作为优化预测值,并根据改进后的BP神经网络中的误差函数获得全局误差,基于所述优化预测值、所述全局误差、预设误差范围和预设次数,获得所述待测水样的最优水质预测值,所述改进后的BP神经网络中的误差函数包括所述初始水质数据随时间变化的信息。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于鲁东大学,未经鲁东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711458163.4/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理