[发明专利]一种基于智能蜂群算法的DDoS攻击检测方法有效

专利信息
申请号: 201711462728.6 申请日: 2017-12-28
公开(公告)号: CN108092989B 公开(公告)日: 2020-11-06
发明(设计)人: 余学山;韩德志;王军;田秋亭;毕坤 申请(专利权)人: 上海海事大学
主分类号: H04L29/06 分类号: H04L29/06
代理公司: 上海信好专利代理事务所(普通合伙) 31249 代理人: 朱成之;周乃鑫
地址: 201306 上海市*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于智能蜂群算法的DDoS攻击检测方法,包含以下过程:通过融合聚类和智能蜂群算法,有效提高DDoS攻击检测精度。智能蜂群算法和聚类算法的融合,消除了聚类算法过度依赖原始聚类中心的缺陷,改进了数据流聚类效果;统计改进后聚类的异常数据流IP地址并计算IP地址的流量特征熵H(x),若H(x)大于等于初步聚类数据流的判别因子RM(x),则判定该数据流是DDoS攻击数据流,否则判定该数据流是其他异常数据流。本发明具有耗时短,DDoS攻击检测准确率高、误报率低的优点。
搜索关键词: 一种 基于 智能 蜂群 算法 ddos 攻击 检测 方法
【主权项】:
1.一种基于智能蜂群算法的DDoS攻击检测方法,其特征在于,包含以下过程:步骤S1、融合聚类算法K-means和智能蜂群算法,利用智能蜂群算法对聚类算法K-means对原始聚类中心的依赖特性进行改进;步骤S2、根据聚类结果将正常流量数据流和异常流量数据流分别聚类;步骤S3、获取异常流量数据流IP地址,并计算异常流量数据流IP地址的特征熵H(x)和初步聚类流量的判别因子RM(x);步骤S4、比较异常流量数据流IP地址的特征熵H(x)和初步聚类流量判别因子RM(x)的大小,若H(x)≥RM(x),则表明发生了DDoS攻击,反之,则表示未发生DDoS攻击,该异常流量数据流是其他异常数据流量;步骤S5、根据比较结果,系统分别对DDoS攻击数据流和/或其他异常数据流发出预警信息。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海海事大学,未经上海海事大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711462728.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top