[发明专利]基于多语注意力机制的事件识别及分类方法及装置有效
申请号: | 201711463578.0 | 申请日: | 2017-12-28 |
公开(公告)号: | CN108345583B | 公开(公告)日: | 2020-07-28 |
发明(设计)人: | 陈玉博;刘康;赵军;刘健 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06F40/30 | 分类号: | G06F40/30;G06N3/08 |
代理公司: | 北京市恒有知识产权代理事务所(普通合伙) 11576 | 代理人: | 郭文浩 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及自然语言处理技术领域,具体涉及一种基于多语注意力机制的事件识别及分类方法及装置,旨在为了解决单语特征识别效果不能满足需求的问题,本发明的方法包括:将仅标注单语事件信息的数据映射为多语平行数据;将所述多语平行数据进行词汇级别对齐,通过多语对齐关系得到同一事件在多种不同语言中的一致性表示;基于单语注意力模型获取多语一致性信息;基于多语注意力模型获取多语互补性信息;基于所述多语一致性信息和所述多语互补性信息进行联合推理,通过非线性神经网络判别模型输出最终的识别结果。本发明可以提高事件的识别效果。 | ||
搜索关键词: | 基于 注意力 机制 事件 识别 分类 方法 装置 | ||
【主权项】:
1.一种基于多语注意力机制的事件识别及分类方法,其特征在于,包括:步骤1,将仅标注单语事件信息的数据映射为多语平行数据;步骤2,将所述多语平行数据进行词汇级别对齐,通过多语对齐关系得到同一事件在多种不同语言中的一致性表示;步骤3,利用步骤2得到同一事件在多种不同语言中的一致性表示,基于单语注意力模型获取多语一致性信息;步骤4,利用步骤2得到同一事件在多种不同语言中的一致性表示,基于多语注意力模型获取多语互补性信息;步骤5,基于所述多语一致性信息和所述多语互补性信息进行联合推理,通过非线性神经网络判别模型输出最终的识别结果;其中,所述单语注意力模型为用于学习同一事件在不同语言中的一致性表示的带注意力机制的神经网络模型;所述多语注意力模型为用于学习事件在不同语言中的不同表示的带注意力机制的神经网络模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711463578.0/,转载请声明来源钻瓜专利网。