[发明专利]一种基于人工神经网络的风速区间预测方法与系统有效

专利信息
申请号: 201711463820.4 申请日: 2017-12-28
公开(公告)号: CN108022025B 公开(公告)日: 2020-08-18
发明(设计)人: 李超顺;陈新彪;邹雯;赖昕杰;陈昊 申请(专利权)人: 华中科技大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/08
代理公司: 深圳市六加知识产权代理有限公司 44372 代理人: 严泉玉
地址: 430070 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于人工神经网络的风速区间预测方法与系统,用于风场的短期风速预测。首先运用变分模态分解(variational mode decomposition,VMD)把初始复杂的时间序列分解为多个结构简单的时间序列。再用Gram‑Schmidt正交化(Gram‑Schmidt orthogonal,GSO)进行特征选择。将处理好的风速序列作为人工神经网络(artificial neural network,ANN)的输入,ANN的输出为未来时刻风速的上下界。最后通过多目标引力搜索算法(Multi objective gravitational search algorithm,MOGSA)训练ANN权重与偏置,以覆盖率和区间宽度两个矛盾的指标作为优化目标,得到最优方案集。通过该方法预测出来的风速区间对实际的风速区间覆盖率高,区间宽度窄。该组合模型将预测的准确度提升到一个很高的水平。
搜索关键词: 一种 基于 人工 神经网络 风速 区间 预测 方法 系统
【主权项】:
1.一种基于人工神经网络的风速区间预测方法,其特征在于,所述方法包括如下步骤:步骤1:采集风场的风速序列:每隔m分钟采集一次实时风速,取实时风速的前len个数据作为风速序列,m的大小选取根据实际需求来定,len为预设值;步骤2:对不稳定非线性的所述风速序列进行VMD分解得出K个结构简单的子时间序列uk(t),其中k的取值从1到K;步骤3:对步骤(2)得到的K个特征u(t)进行数据处理,用循环结构i=1:1:len-L,每次取第i个数到第i+L-1个数总共L个数据作为输入,取第i+L个数据作为参考输出,得到一个len-L列L行的输入数组P和len-L列1行的参考输出数组T;步骤4:对输入数组P进行GSO相关性选择,得到所有Xl对Y的相关性排序,P的第l行表示为Xl=[xl1,xl2,…,xlM],T表示为Y=[y1,y1,…,yM],其中l的取值范围是从1到L,M表示数组的列数,其值等于len-L;步骤5:对步骤4得到的相关性排序中选出前LL个最相关的Xl作为人工神经网络ANN的输入,ANN的输入层数为LL,隐藏层数hiddennum,输出层数为2,隐藏层与输出层的激活函数采用线性函数;步骤6:P取前RR%的列作为训练输入数据集P_train,T取前RR%的列作为训练参考输出数据集T_train,使用MOGSA训练人工神经网络,得到人工神经网络的最优权重与偏置fbest,其中RR为预设值;步骤7:令k=k+1,返回到步骤(3),若迭代次数达到K,则算法停止;步骤8:将待预测风速序列作为ANN的输入,最终训练出的fbest作为的ANN的权重与偏置,得到子区间序列,然后把k个子序列反归一化后相加,得到预测风速区间。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711463820.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top