[发明专利]一种针对服装照片的特征提取方法在审

专利信息
申请号: 201810008857.6 申请日: 2018-01-04
公开(公告)号: CN108229503A 公开(公告)日: 2018-06-29
发明(设计)人: 陈刚;顾晓玲;寿黎但;陈珂;伍赛;胡天磊 申请(专利权)人: 浙江大学
主分类号: G06K9/46 分类号: G06K9/46;G06K9/62;G06N3/04;G06N3/08
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 林超
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种针对服装照片的特征提取方法。为服装照片构建基于深度学习模型的特征提取模型,特征提取模型中包含多任务分类损失函数和四元损失函数;采集若干带标签的服装照片作为训练数据,将带标签的服装照片及其标签输入到特征提取模型进行训练,在多任务分类损失函数和四元损失函数的共同优化下通过反向传播算法进行特征提取模型的参数优化,获得训练后的特征提取模型,以训练后的特征提取模型对带标签的服装照片进行处理提取获得特征向量。本发明针对服装照片设计的特征提取方法非常通用而且鲁棒,可用于服装照片的分类、标注、检索和聚类等应用。
搜索关键词: 特征提取模型 服装 损失函数 特征提取 标签 任务分类 参数优化 反向传播 特征向量 训练数据 构建 聚类 可用 鲁棒 算法 标注 检索 采集 通用 分类 应用 优化 学习
【主权项】:
1.一种针对服装照片的特征提取方法,其特征在于:所述方法的步骤如下:为服装照片构建基于深度学习模型的特征提取模型,特征提取模型中包含多任务分类损失函数和四元损失函数;采集若干带标签的服装照片作为训练数据,将带标签的服装照片及其标签输入到特征提取模型进行训练,在多任务分类损失函数和四元损失函数的共同优化下通过反向传播算法进行特征提取模型的参数优化,获得训练后的特征提取模型,以训练后的特征提取模型对带标签的服装照片进行处理提取获得特征向量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810008857.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top