[发明专利]一种基于深度神经网络的心冲击信号深瓶颈特征提取方法有效

专利信息
申请号: 201810017515.0 申请日: 2018-01-09
公开(公告)号: CN108256457B 公开(公告)日: 2021-06-04
发明(设计)人: 蒋芳芳;刘星航;刘海滨;张长帅;徐敬傲 申请(专利权)人: 东北大学
主分类号: G06K9/00 分类号: G06K9/00;G06N3/04;G06N3/08
代理公司: 沈阳优普达知识产权代理事务所(特殊普通合伙) 21234 代理人: 张志伟
地址: 110169 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及生物特征提取技术领域,是一种基于深度神经网络的心冲击信号深瓶颈特征提取方法,以心冲击信号为特征提取对象,针对其波形幅值微弱、易受外界干扰的特点,结合同步采集的心电信号,利用深度神经网络挖掘深层特征的机理,提取其深瓶颈特征参数。该特征以心冲击信号做为输入向量,同步心电信号做为目标向量,经过预先设计的9层神经网络进行训练以获取深瓶颈特征,实现心脏动力学性能与电生理特征的有机结合。该特征以日常较易获取的心冲击信号及心电信号做为研究对象,不仅能够克服常规波形特征参数对波形波动的依赖性,同时能够提高单一特征参数的表征性能,是一种应用深度学习理论进行日常心脏功能分析的新尝试。
搜索关键词: 一种 基于 深度 神经网络 冲击 信号 瓶颈 特征 提取 方法
【主权项】:
1.一种基于深度神经网络的心冲击信号深瓶颈特征提取方法,其特征在于,包括以下步骤:步骤1,确定神经网络的输入向量及目标向量形式;同步检测同一受试者的心电信号及心冲击信号,并分别对二者进行预处理,获取深度神经网络的输入向量及目标向量;步骤2,确定深层神经网络结构;构建一个基于受限玻尔兹曼机的带有瓶颈层的9层神经网络;步骤3,对神经网络进行预训练,获取深层置信网络模型:以心冲击信号输入向量做为神经网络输入,应用逐层训练方法对神经网络进行无监督预训练,获取DBN模型;步骤4,对神经网络进行有监督精细训练,获取深瓶颈特征;以心电信号目标向量做为输出层监督目标,构建新型损失函数,并应用反向传播BP算法更新神经网络参数,而后移除瓶颈层之后的各层神经网络,以瓶颈层做为输出层,获得的输出向量即为深瓶颈特征。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810017515.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top