[发明专利]基于卷积神经网络与随机森林分类的声音场景识别方法在审

专利信息
申请号: 201810038744.0 申请日: 2018-01-13
公开(公告)号: CN108231067A 公开(公告)日: 2018-06-29
发明(设计)人: 李应;李俊华 申请(专利权)人: 福州大学
主分类号: G10L15/16 分类号: G10L15/16;G10L15/06;G10L25/21;G10L25/24;G10L25/30;G10L25/45;G06K9/62
代理公司: 福州元创专利商标代理有限公司 35100 代理人: 蔡学俊
地址: 350108 福建省福*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于卷积神经网络与随机森林分类的声音场景识别方法。首先,声音场景通过Mel滤波器生成Mel能量谱及其片段样本集;然后,利用片段样本集对CNN进行两阶段训练,截断全连接层的特征输出,得到片段样本集的CNN特征;最后,用随机森林对片段样本集的CNN特征进行分类,得到最终识别结果。相关实验结果表明,本发明方法在IEEE DCASE2016声音场景评估数据集上的识别率既优于Mel频率倒谱系数特征结合高斯混合模型(MFCC‑GMM)的基准方法,也优于现有的相关识别方法。
搜索关键词: 声音场景 样本集 随机森林 卷积神经网络 分类 高斯混合模型 频率倒谱系数 滤波器生成 评估数据 特征结合 连接层 两阶段 能量谱 识别率 截断 输出
【主权项】:
1.一种基于卷积神经网络与随机森林分类的声音场景识别方法,其特征在于:首先,声音场景通过Mel滤波器生成Mel能量谱及其片段样本集;然后,利用片段样本集对CNN进行两阶段训练,截断全连接层的特征输出,得到片段样本集的CNN特征;最后,用随机森林对片段样本集的CNN特征进行分类,得到最终识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810038744.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top