[发明专利]基于深度学习的实体和实体关系识别方法及装置在审
申请号: | 201810053818.8 | 申请日: | 2018-01-19 |
公开(公告)号: | CN108280062A | 公开(公告)日: | 2018-07-13 |
发明(设计)人: | 鄂海红;宋美娜;胡莺夕;王晓晖 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | G06F17/27 | 分类号: | G06F17/27 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 张润 |
地址: | 100876 北京市海淀区西*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的实体和实体关系识别方法及装置,其中方法包括以下步骤:输入文本,并将文本转换为词向量,其中,采用实体位置、实体关系和关系位置的标记方式;通过编解码的方式对词向量进行序列标注,以获取序列标注的词向量;对模型的输出进行第二次排序,其中,选择每个单词的概率最高的预设数量的标签作为候选,并进行标签配对,以配对成功后获取正确标签。该方法采用深度学习方法结合自然语言处理技术,考虑多标签和实体重叠的情况,提出全新的关系抽取解决方案,从而提升关系抽取结果精确度,并能够处理多种复杂情况。 | ||
搜索关键词: | 实体关系 标签 关系抽取 序列标注 词向量 配对 自然语言处理技术 标记方式 关系位置 实体位置 输入文本 文本转换 编解码 向量 预设 学习 单词 排序 输出 概率 成功 | ||
【主权项】:
1.一种基于深度学习的实体和实体关系识别方法,其特征在于,包括以下步骤:输入文本,并将所述文本转换为词向量,其中,采用实体位置、实体关系和关系位置的标记方式;通过编解码的方式对所述词向量进行序列标注,以获取序列标注的词向量;以及对模型的输出进行第二次排序,其中,选择每个单词的概率最高的预设数量的标签作为候选,并进行标签配对,以配对成功后获取正确标签。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810053818.8/,转载请声明来源钻瓜专利网。