[发明专利]一种基于深度神经网络的图像质量检测方法及装置有效
申请号: | 201810067110.8 | 申请日: | 2018-01-24 |
公开(公告)号: | CN108389182B | 公开(公告)日: | 2020-07-17 |
发明(设计)人: | 吴柯维;公绪超 | 申请(专利权)人: | 北京卓视智通科技有限责任公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 北京辰权知识产权代理有限公司 11619 | 代理人: | 刘广达 |
地址: | 100085 北京市海淀区四*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度神经网络的图像质量检测方法及装置,属于图像处理技术领域。所述方法包括:对各图像分别进行整体质量及局部质量的标定后作为样本,得到样本库;在优化的深度神经网络中对样本库进行分层训练,得到整体质量检测模型和局部质量检测模型,对整体质量检测模型和局部质量检测模型进行融合,得到图像质量检测模型;采用图像质量检测模型,对输入图像进行整体质量检测和局部质量检测后,得到图像质量。本发明中训练出的图像质量检测模型不仅具有现有的客观检测方法的优点,同时能够反应出人的主观评价,并且在使用该模型进行图像质量检测时,综合了图像的整体质量及局部质量后得到图像质量,使得检测的结果更具准确性。 | ||
搜索关键词: | 一种 基于 深度 神经网络 图像 质量 检测 方法 装置 | ||
【主权项】:
1.一种基于深度神经网络的图像质量检测方法,其特征在于,包括:对各图像分别进行整体质量及局部质量的标定后作为样本,得到样本库;在优化的深度神经网络中对所述样本库进行分层训练,得到整体质量检测模型和局部质量检测模型,对所述整体质量检测模型和所述局部质量检测模型进行融合,得到图像质量检测模型;采用所述图像质量检测模型,对输入图像进行整体质量检测和局部质量检测后,得到图像质量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京卓视智通科技有限责任公司,未经北京卓视智通科技有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810067110.8/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序