[发明专利]基于最小单纯形融合特征学习的场景图像属性识别方法有效
申请号: | 201810105576.2 | 申请日: | 2018-02-02 |
公开(公告)号: | CN108460406B | 公开(公告)日: | 2022-04-29 |
发明(设计)人: | 刘渭滨;邹智元;邢薇薇;赵雅昕;郑伟 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G06V10/80 | 分类号: | G06V10/80;G06K9/62 |
代理公司: | 北京市万慧达律师事务所 11111 | 代理人: | 黄玉东 |
地址: | 100044*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于最小单纯形融合特征学习的场景图像属性识别方法,包括:S1、采集多个数据样本并定义概念标签;S2、将每个数据样本分割为多个数据样本块;S3、对每个数据样本块进行特征提取并对应为多个特征向量;S4、向属于不同数据样本的具有相同含义的数据样本块标记同一个概念标签,建立特征向量与概念标签的关联,得到关联矩阵;S5、进行最小单纯形融合特征学习,得到各概念对应的单纯形融合特征;S6、进行多特征融合权重学习,建立含有表示同一概念的不同单纯形融合特征的权重的权重矩阵;S7、基于权重矩阵和单纯形融合特征进行信息属性识别。本发明能够对原始数据细粒度的概念标签进行学习,避免了单标签的不准确问题。 | ||
搜索关键词: | 基于 最小 单纯 融合 特征 学习 场景 图像 属性 识别 方法 | ||
【主权项】:
1.一种基于最小单纯形融合特征学习的信息属性识别方法,其特征在于,包括:S1、采集目标领域的多个数据样本,为各数据样本所关联的概念定义对应的概念名称并将每个概念名称分别对应为一个概念标签,得到概念标签集合;S2、采用数据分割算法将每个数据样本分割为多个数据样本块;S3、采用多种特征提取算法对每个数据样本块进行特征提取,将每种特征分别对应为一个特征向量,得到多个特征向量;S4、向属于不同数据样本的具有相同含义的数据样本块标记概念标签集合中的同一个概念标签,建立每个数据样本块所对应的所有特征向量与该数据样本块标记的概念标签的关联,得到数据样本块与概念标签之间的关联和的特征向量与概念标签之间的关联的关联矩阵;S5、基于关联矩阵,进行最小单纯形融合特征学习,得到各概念对应的单纯形融合特征;S6、进行多特征融合权重学习,建立含有表示同一概念的不同单纯形融合特征的权重的权重矩阵;S7、基于权重矩阵和单纯形融合特征进行信息属性识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810105576.2/,转载请声明来源钻瓜专利网。