[发明专利]一种基于加权的Huber约束稀疏编码的人脸识别方法有效
申请号: | 201810119125.4 | 申请日: | 2018-02-06 |
公开(公告)号: | CN108509843B | 公开(公告)日: | 2022-01-28 |
发明(设计)人: | 雷大江;蒋志杰;陈浩;张莉萍;吴渝 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06V40/16 | 分类号: | G06V40/16;G06V10/77;G06K9/62 |
代理公司: | 广州三环专利商标代理有限公司 44202 | 代理人: | 郝传鑫;贾允 |
地址: | 400065 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于加权的Huber约束稀疏编码的人脸识别方法,包括:采用回归分类器作为人脸识别的基础,引入L1正则约束,对查询样本在训练样本集X的编码系数进行稀疏化,得到稀疏编码模型;在稀疏编码模型的基础上,采用Huber损失函数替代L1保真项或L2保真项,得到稀疏鲁棒性编码模型;根据训练样本集和查询样本的残差获取训练样本集中各像素点的权重;在稀疏鲁棒性编码模型的基础上,利用权重以及Huber损失函数的阈值得到基于加权的Huber约束稀疏编码模型;根据其编码系数获取查询样本在训练样本集X中的残差向量;根据残差向量分析闭塞环境下查询样本的识别率。本发明有效的降低了类内变化,并避免类间干扰,扩大了权重向量的效果,提高识别率。 | ||
搜索关键词: | 一种 基于 加权 huber 约束 稀疏 编码 识别 方法 | ||
【主权项】:
1.一种基于加权的Huber约束稀疏编码的人脸识别方法,其特征在于,包括:采用回归分类器作为人脸识别的基础,引入L1正则约束,对查询样本y在训练样本集X的编码系数进行稀疏化,得到稀疏编码模型;在所述稀疏编码模型的基础上,采用Huber损失函数替代L1保真项或L2保真项,得到稀疏鲁棒性编码模型;根据训练样本集和查询样本y的残差获取训练样本集中各像素点的权重;在所述稀疏鲁棒性编码模型的基础上,利用所述权重以及Huber损失函数的阈值得到目标编码模型;所述目标编码模型为基于加权的Huber约束稀疏编码模型;所述训练样本集包括样本子集或样本全集;根据所述目标编码模型中的编码系数获取查询样本y在训练样本集X中的残差向量;根据所述残差向量分析闭塞环境下查询样本的识别率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810119125.4/,转载请声明来源钻瓜专利网。
- 上一篇:用于驾驶员的认证装置
- 下一篇:基于地基云图的VPER云团识别方法