[发明专利]模型生成、语义识别的方法、系统、设备及存储介质在审

专利信息
申请号: 201810149170.4 申请日: 2018-02-13
公开(公告)号: CN110209831A 公开(公告)日: 2019-09-06
发明(设计)人: 王颖帅;李晓霞;苗诗雨 申请(专利权)人: 北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司
主分类号: G06F16/36 分类号: G06F16/36;G06F17/27;G06K9/62
代理公司: 上海弼兴律师事务所 31283 代理人: 薛琦;邓忠红
地址: 100195 北京市海淀区杏石口路6*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种模型生成、语义识别的方法、系统、设备及存储介质,模型生成的方法包括获取历史数据;对每条所述历史数据进行特征提取及标注以得到对应的历史序列,每条所述历史序列包括特征提取后的特征和标注后的标签,所述标签包括物品的中心词、物品的修饰词、询问范围、物品的品牌及频道编号中的至少一种;采用条件随机场学习算法对所述历史序列进行模型训练,以确定条件随机场模型的参数,所述参数包括迭代次数、步长和学习率。本发明提供的基于条件随机场的用户语义识别的模型生成、语义识别的方法、系统、设备及存储介质相比于模板匹配的传统思路,更加的灵活且覆盖更多的用户,能够提升语音相关服务的用户体验和点击转化率。
搜索关键词: 模型生成 存储介质 语义识别 历史数据 特征提取 标注 标签 随机场模型 传统思路 基于条件 模板匹配 模型训练 确定条件 学习算法 用户体验 用户语义 中心词 迭代 品牌 机场 修饰 语音 灵活 询问 覆盖 学习 服务
【主权项】:
1.一种模型生成的方法,其特征在于,包括以下步骤:获取历史数据;对每条所述历史数据进行特征提取及标注以得到对应的历史序列,每条所述历史序列包括特征提取后的特征和标注后的标签,所述标签包括物品的中心词、物品的修饰词、询问范围、物品的品牌及频道编号中的至少一种;采用条件随机场学习算法对所述历史序列进行模型训练,以确定条件随机场模型的参数,所述参数包括迭代次数maxiter、步长stepsize和学习率learningrate。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司,未经北京京东尚科信息技术有限公司;北京京东世纪贸易有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810149170.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top