[发明专利]一种建筑能耗短期预测方法有效

专利信息
申请号: 201810191237.0 申请日: 2018-03-08
公开(公告)号: CN108320016B 公开(公告)日: 2023-09-19
发明(设计)人: 唐桂忠;钱青 申请(专利权)人: 南京工业大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/047;G06N3/048;G06N3/08
代理公司: 南京禹为知识产权代理事务所(特殊普通合伙) 32272 代理人: 王晓东
地址: 211800 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种建筑能耗短期预测方法,包括采集建筑分项能耗历史数据,确定并采集影响建筑能耗分项预测的主要影响因素历史数据;分析并确定基于时间序列自回归模型构建照明能耗预测模型;构建基于深度学习DBN网络的能耗预测模型;分项预测空调能耗、动力能耗、特殊能耗。本发明的有益效果:本发明提供的一种建筑能耗短期预测方法,能够更加精确有效地预测建筑能耗中的各分项能耗。
搜索关键词: 一种 建筑 能耗 短期 预测 方法
【主权项】:
1.一种建筑能耗短期预测方法,其特征在于:包括,采集建筑分项能耗历史数据,确定并采集影响建筑能耗分项预测的主要影响因素历史数据,所述主要影响因素包括建筑照明能耗历史数据;将采集的建筑照明能耗历史数据区分为输入数据和验证数据,分析并确定基于时间序列自回归模型构建照明能耗预测模型,并将输入数据作为预测模型的输入参数,对照明能耗短期预测并通过验证数据验证结果;根据建筑分项能耗历史数据进行综合分析,建立建筑分项能耗数据库,然后与采集到的建筑分项能耗的主要影响因素归一化处理,最后再将预处理后的数据划分为训练数据和测试数据,利用训练数据和测试数据通过训练和测试构建基于深度学习DBN网络的能耗预测模型;将时间序列模型预测出的照明能耗与实际监测的主要影响因素一同作为训练后DBN模型的输入参数,分项预测空调能耗、动力能耗、特殊能耗。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京工业大学,未经南京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810191237.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top