[发明专利]基于条件生成对抗网络的多监控视频人脸合成正脸的方法有效
申请号: | 201810225929.2 | 申请日: | 2018-03-19 |
公开(公告)号: | CN108510061B | 公开(公告)日: | 2022-03-29 |
发明(设计)人: | 贺前华;陈柱良;李黎晗 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06V10/774;G06V40/16;G06V10/82 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 王东东 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于条件生成对抗的多监控视频人脸合成正脸的方法,包括采集监控视频中的无约束偏转角度人脸和正脸,筛选出正脸,得到无约束偏转角度人脸图像数据集和正脸图像数据集,并对每一个人的人脸图像数据集进行标注;对每个人的正脸图像数据集进行人脸对齐;构建条件生成对抗网络,采用对抗训练的策略对生成器模型和卷积神经网络判决器模型进行训练,直到条件生成对抗网络收敛稳定,最后将同一监控视频捕捉到的人脸图像输入训练好的生成器输入,得到一张正脸图像。 | ||
搜索关键词: | 基于 条件 生成 对抗 网络 监控 视频 合成 方法 | ||
【主权项】:
1.一种基于条件生成对抗网络的多监控视频人脸合成正脸的方法,其特征在于,包括如下步骤:S1采集监控视频中的无约束偏转角度人脸,并将同一个人的脸归为一类,筛选出正脸,得到无约束偏转角度人脸图像数据集和正脸图像数据集,并对每一个人的人脸图像数据集进行标注;S2对每个人的正脸图像数据集根据人脸关键点进行仿射变换实现人脸对齐;S3构建条件生成对抗网络,所述条件生成对抗网络包括用于生成正脸图像的基于多输入自动编码器的生成器模型和用于评价合成图像质量的基于局部感受野评分的卷积神经网络判决器模型;S4采用对抗训练的策略对生成器模型和卷积神经网络判决器模型进行训练,直到条件生成对抗网络收敛稳定;S5将N张同一监控视频片段下捕捉到的无约束偏转角度的人脸作为S4中已经训练好的生成器的输入,得到一张跟输入人脸图像同属于一个人的正脸图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810225929.2/,转载请声明来源钻瓜专利网。