[发明专利]一种基于深度卷积神经网络结构的旋转机械故障特征智能诊断方法有效
申请号: | 201810240234.1 | 申请日: | 2018-03-22 |
公开(公告)号: | CN108830127B | 公开(公告)日: | 2021-08-10 |
发明(设计)人: | 李舜酩;辛玉;王金瑞;程春 | 申请(专利权)人: | 南京航空航天大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 许方 |
地址: | 210016 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度卷积神经网络模型的旋转机械故障特征智能诊断方法,包括:(1)采集旋转机械故障振动信号数据,将数据分段并做去趋势项预处理;(2)对信号数据进行短时傅里叶时频变换分析,得到各振动信号的时频表示,并用伪色彩图显示;(3)利用插值方法缩小图像分辨率并将各图像叠加,形成训练样本和测试样本,作为卷积神经网络的输入;(4)构建深度卷积神经网络模型,包括输入层、两个卷积层、两个池化层、全连接层和softmax分类层和输出层;(5)将训练样本导入模型进行训练并获得卷积特征、池化特征和神经网络结构参数,根据构建的深度神经网络模型对未知的故障信号实现诊断。本发明较现有的时域或频域方法,具有更好的准确性和稳定性。 | ||
搜索关键词: | 一种 基于 深度 卷积 神经网络 结构 旋转 机械 故障 特征 智能 诊断 方法 | ||
【主权项】:
1.一种基于深度卷积神经网络结构的旋转机械故障特征智能诊断方法,其特征在于,包括以下步骤:步骤1、采集故障振动信号并做预处理:将采集到的原始振动信号进行分段处理,采用随机重叠的方法从振动信号中提取M段信号,每一段信号有N个样本点;将提取的信号组成样本数据集{S}N×M,其中,sj∈SN×1表示第j个分段中的含有N个数据点;利用三次多项式拟合消除每一段振动信号中的趋势项:式中,yk、xk为样本点,a0、a1为系数,n,k=1,2,3,…,N,其中,步骤2、利用短时Fourier变换方法提取振动信号的时频特征:将在步骤1中得到的样本数据集进行短时Fourier时频变换分析,得到各个振动信号的时频特征,并利用伪色彩图显示;步骤3、利用插值方法缩小图像分辨率并将各个图像叠加,形成训练样本集和测试样本集,作为卷积神经网络的输入;步骤4、构建深度卷积神经网络模型,包括输入层、两个卷积层、两个池化层、全连接层、softmax分类层和输出层;先将两个卷积层和两个池化层分别交叉叠加,然后将第二个池化层的输出特征根据全连接的形式展开,再将softmax分类层联接到全连接层上,组成深度卷积神经网络模型;步骤5、将训练样本集导入深度卷积神经网络模型进行训练并获得卷积特征、池化特征和神经网络结构参数,根据构建的深度卷积神经网络模型对未知的故障信号实现基于时频特征提取的旋转机械故障诊断。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810240234.1/,转载请声明来源钻瓜专利网。