[发明专利]一种基于假设性半监督学习的开放领域问答方法有效
申请号: | 201810253156.9 | 申请日: | 2018-03-26 |
公开(公告)号: | CN108717413B | 公开(公告)日: | 2021-10-08 |
发明(设计)人: | 潘博远;蔡登;姜兴华;陈哲乾;赵洲;何晓飞 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06F16/332 | 分类号: | G06F16/332;G06N3/08 |
代理公司: | 杭州天勤知识产权代理有限公司 33224 | 代理人: | 马士林 |
地址: | 310013 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于假设性半监督学习的开放领域问答方法,包括:(1)使用信息检索技术从语料库中将与问题相关的文章抽取出来;(2)假设给定问答训练集自带的文章是唯一的正标签,从语料库中抽取的所有文章都是负标签;(3)构建深度学习模型,通过训练一个文章打分器学习正标签的特征,训练一个阅读器从文章中选择正确答案;(4)进行文章相关性排序,将相关性高的前n个文章送入打分器内打分并根据分数重新标签;(5)重复步骤3和步骤4,直到模型收敛;(6)模型训练完毕,进行开放领域问答应用。利用本发明可以在不依赖额外人工标注和外部知识的情况下大幅提升现有开放领域问答系统的文章抽取质量和答案的准确率。 | ||
搜索关键词: | 一种 基于 假设 监督 学习 开放 领域 问答 方法 | ||
【主权项】:
1.一种基于假设性半监督学习的开放领域问答方法,其特征在于,包括以下步骤:(1)使用信息检索技术从语料库中将与问题相关的文章抽取出来;(2)假设给定问答训练集自带的文章是唯一的正标签,从语料库中抽取的所有文章都是负标签;(3)构建深度学习模型,通过训练一个文章打分器来学习正标签文章的特征,同时训练一个阅读器以从文章中选择正确答案;(4)进行文章相关性排序,将相关性高的前n个文章送入打分器内打分并根据分数重新标签;(5)重复步骤3和步骤4,直到整个深度学习模型收敛;(6)模型训练完毕,进行开放领域问答应用。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810253156.9/,转载请声明来源钻瓜专利网。
- 上一篇:基于中文分词的中文校对纠错方法及系统
- 下一篇:资源推荐方法及装置