[发明专利]一种基于深度学习模型对心电信号分类的数据预处理方法有效

专利信息
申请号: 201810261490.9 申请日: 2018-03-28
公开(公告)号: CN108647565B 公开(公告)日: 2021-08-03
发明(设计)人: 方路平;毛科栋;潘清;汪振杰;陆飞 申请(专利权)人: 浙江工业大学
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于深度学习模型对心电信号分类的数据预处理方法,包括以下步骤:a取得专家标记的包含正常心电和异常心电的心电信号作为训练样本,心电信号测量时长任意,假定最长测量时长为t秒,采样频率为fs;b对原始训练样本做降噪处理,利用小波变换去除基线漂移;c将训练样本分为训练集和测试集,对训练集做数据扩增;d将训练集输入深度学习模型进行训练,利用测试集优化模型参数;e原始心电信号经过b和c两步预处理后取t×fs个数据点作为样本输入模型中即可获得心电信号分类结果。本发明可以扩增样本数,同时做到样本均衡,使模型更容易训练,有助提高模型的分类能力和鲁棒性样本均衡,使模型更容易训练,有助提高模型的分类能力和鲁棒性。
搜索关键词: 一种 基于 深度 学习 模型 对心 电信号 分类 数据 预处理 方法
【主权项】:
1.一种基于深度学习模型对心电信号分类的数据预处理方法,其特征在于,所述方法包括以下步骤:a取得专家标记的包含正常心电和异常心电的心电信号作为训练样本,心电信号测量时长任意,假定最长测量时长为t秒,采样频率为fs赫兹,异常心电信号类型共有L类,正常心电信号样本数为N,第1类异常心电信号样本数为N1,第2类异常心电信号样本数为N2……第L类异常心电信号样本数为NL;b对原始训练样本做降噪处理,利用小波变换去除基线漂移;c将训练样本分为训练集和测试集,对训练集做数据扩增;d将训练集输入深度学习模型进行训练,利用测试集优化模型参数;e原始心电信号经过b和c两步预处理后取t×fs个数据点作为样本输入模型中即可获得心电信号分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810261490.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top