[发明专利]基于集成分类器的TA蛋白靶向预测方法在审
申请号: | 201810273087.8 | 申请日: | 2018-03-29 |
公开(公告)号: | CN108595909A | 公开(公告)日: | 2018-09-28 |
发明(设计)人: | 刘弘;何演林;马长乐;赵丹丹;陆佃杰;吕晨 | 申请(专利权)人: | 山东师范大学 |
主分类号: | G06F19/16 | 分类号: | G06F19/16;G06F19/24;G06K9/62;G06N3/08 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 王志坤 |
地址: | 250014 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于集成分类器的TA蛋白靶向方法,包括:采用PSSM方法对蛋白质数据进行编码;融合了一种Bayes的特征提取方法来提取蛋白质序列特征;采用mRMR算法对蛋白质数据进行特征选择;用支持向量机去训练模型,在训练过程中基于网格方式对参数γ和惩罚系数C进行优化;最后,集成SVM、NB、RF、Logist、KNN五种弱分类器对TA蛋白在亚细胞器靶向的分类结果,通过投票方式得出最终的分类结果;本发明有益效果:融合了一种Bayes的特征提取方法来提取蛋白质序列特征,通过集成多种算法的分类结果,可以更好的预测TA蛋白在亚细胞器的靶向。 | ||
搜索关键词: | 分类结果 蛋白 靶向 蛋白质序列特征 蛋白质数据 集成分类器 特征提取 算法 亚细胞器靶向 支持向量机 惩罚系数 弱分类器 特征选择 投票方式 网格方式 训练过程 训练模型 亚细胞器 融合 预测 优化 | ||
【主权项】:
1.基于集成分类器的TA蛋白靶向方法,其特征在于,包括以下步骤:(1)通过对蛋白质blast序列产生的PSSM矩阵信息编码;(2)Bayes特征提取:利用基于互信息的最大相关最小冗余mRMR的特征选择算法对数据库中多关系进行特征选择,在每个关系表中都选择出对分类帮助最大的特征子集,根据贝叶斯方法,求出每个氨基酸在每个位置发生的概率;(3)对提取得到的不同特征特征值进行归一化处理,使所有值都落入相同的数字取值区间内;(4)利用训练学习后的集成模型进行分类,采用投票的方式选择出最终的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东师范大学,未经山东师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810273087.8/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用