[发明专利]基于深度学习的异源图像匹配方法有效
申请号: | 201810277816.7 | 申请日: | 2018-03-30 |
公开(公告)号: | CN108537264B | 公开(公告)日: | 2021-09-07 |
发明(设计)人: | 王爽;焦李成;方帅;权豆;王若静;梁雪峰;侯彪;刘飞航 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 徐文权 |
地址: | 710065 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供的基于深度学习的异源图像匹配方法,首先制作异源图像块数据集;图像预处理;获取图像块特征图;通过特征图得到特征向量;特征图的融合并归一化;训练图像匹配网络;预测匹配概率;本发明有效克服了现有技术中异源图像块匹配过拟合的问题,极大的提高了网络的性能,提升了网络的训练效率,增强了网络的鲁棒性。本发明可应用于异源图像配准、图像追踪、多视角重建等领域。 | ||
搜索关键词: | 基于 深度 学习 图像 匹配 方法 | ||
【主权项】:
1.基于深度学习的异源图像匹配方法,其特征在于,包括以下步骤:步骤1),采用VIS‑NIR数据集将所需匹配的异源图像制作数据集,得到一组训练集和八组测试集;步骤2),将所有需要匹配的异源图像进行预处理,得到预处理后的异源图像;步骤3),获取图像块特征图:将预处理后的每对异源图像中的图像块A和图像块B进行左右拼接,拼接后采用改进的VGG网络提取特征,得到输入图像的特征图;接着将所得的特征图左右均分,则分别得到与图像块A对应的特征图V和与图像块B对应的特征图N;步骤4),特征图融合:将步骤3)所得的特征图V和特征图N进行做差运算,并将做差后的特征图进行归一化处理,得到融合后的特征图;步骤5),训练图像匹配网络:用全连接层和交叉熵损失函数对步骤4)中所得的融合后的特征图进行二分类,得到匹配网络的权重;步骤6),预测匹配概率:将步骤5)中训练好的匹配网络权重载入到模型中,并依次读取所有测试集数据,得到softmax分类器输出的异源图像匹配和不匹配的预测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810277816.7/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序