[发明专利]一种中文症状体征构成识别方法在审

专利信息
申请号: 201810292579.1 申请日: 2018-04-04
公开(公告)号: CN108563725A 公开(公告)日: 2018-09-21
发明(设计)人: 叶琪;阮彤;王祺;曾露;翟洁 申请(专利权)人: 华东理工大学
主分类号: G06F17/30 分类号: G06F17/30;G06K9/62;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 200237 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种中文症状体征构成识别方法。该方法包括:将中文症状体征分解为11种症状体征的构成成分;根据症状体征的构成成分为中文症状体征中的每个汉字标注,得到每个汉字表示症状体征的构成情况的标签序列;对中文症状体征数据进行数据预处理,得到汉字特征向量和对应的词性特征向量;将所述汉字特征向量和词性特征向量利用双向LSTM神经网络来训练得到输入症状体征的特征向量;将所述症状体征的特征向量利用条件随机场来对每个汉字进行标注,得到症状体征的标签序列;在神经网络的训练过程中,利用已有的类型‑成分词典生成人工数据帮助训练。相比于现有技术,本发明能够很好的识别中文症状,识别正确率得到很大的提高。
搜索关键词: 症状体征 中文 汉字特征向量 标签序列 词性特征 神经网络 特征向量 汉字 向量 标注 数据预处理 词典生成 利用条件 人工数据 训练过程 正确率 分解 机场 帮助
【主权项】:
1.一种中文症状体征构成识别方法,其特征在于,包括:(1)将中文症状体征分解为11种症状体征的构成成分,包括:原子症状、部位词、中心词、连接词、否定词、程度词、情景限定词、方位词、感觉词、特征词、其它修饰词;(2)根据症状体征的构成成分为中文症状体征中的每个汉字标注,得到每个汉字表示症状体征的构成情况的标签序列;(3)对中文症状体征数据进行数据预处理,得到汉字特征向量和对应的词性特征向量;(4)将所述汉字特征向量和词性特征向量传入到LSTM神经网络,利用双向LSTM神经网络来训练得到输入症状体征的特征向量;(5)将所述症状体征的特征向量利用条件随机场来对每个汉字进行标注,得到症状体征的标签序列;(6)在神经网络的训练过程中,利用已有的类型‑成分词典生成人工数据帮助训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华东理工大学,未经华东理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810292579.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top