[发明专利]一种基于改进AlexNet的遥感图像识别方法有效

专利信息
申请号: 201810300859.2 申请日: 2018-04-04
公开(公告)号: CN108614997B 公开(公告)日: 2021-05-11
发明(设计)人: 张秀再;宫浩;胡敬锋 申请(专利权)人: 南京信息工程大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 朱桢荣
地址: 210044 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于改进AlexNet的遥感图像识别方法,属于人工智能图片分类领域,本发明先对遥感图像进行均匀裁剪,将裁剪后的图像分为训练集和验证集;将训练集输入改进AlexNet网络进行训练,生成训练后的网络模型:通过4层卷积层提取训练集中图像的特征图,并分别对前三个卷积层的输出进行池化堆叠,将经池化层堆叠后的输出再输入下一个卷积层中;将经过卷积后的输出再输入至两层全连接层中,采用随机梯度下降算法结合验证集对网络参数进行更新,生成训练后的网络模型;将待勘测图像输入生成的网络模型,得到遥感图像分类结果。本发明借助了卷积神经网络处理大量图片的准确性和稳定性,相较于传统的图片分类算法,该网络模型具有较高的识别率。
搜索关键词: 一种 基于 改进 alexnet 遥感 图像 识别 方法
【主权项】:
1.一种基于改进AlexNet的遥感图像识别方法,其特征在于,包括以下步骤:步骤1、对遥感图像进行均匀裁剪,得到裁剪后的图像,将裁剪后的图像分为训练集和验证集;步骤2、将训练集输入改进AlexNet进行训练,生成训练后的网络模型;改进AlexNet进行训练的过程如下:步骤A、通过4层卷积层提取训练集中图像的特征图,并分别对前三个卷积层的输出进行池化堆叠,将经池化层堆叠后的输出再输入下一个卷积层中;步骤B、将步骤A中经过卷积后的输出再输入至两层全连接层中,采用随机梯度下降算法结合验证集对网络参数进行更新,生成训练后的网络模型;步骤3、将待勘测图像输入步骤2中生成的网络模型,得到遥感图像分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810300859.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top