[发明专利]基于自扩充表示和相似双向约束的短文本主题发现方法及系统有效

专利信息
申请号: 201810306013.X 申请日: 2018-04-08
公开(公告)号: CN108681557B 公开(公告)日: 2022-04-01
发明(设计)人: 姜波;李宁;卢志刚;姜政伟 申请(专利权)人: 中国科学院信息工程研究所
主分类号: G06F16/33 分类号: G06F16/33;G06F40/216;G06F40/30;G06F40/289
代理公司: 北京君尚知识产权代理有限公司 11200 代理人: 余长江
地址: 100093 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 本分明提供一种基于自扩充表示和相似双向约束的短文本主题发现方法及系统,该方法的步骤包括:基于TF‑IWF词权重度量方法构建待挖掘主题的词‑文档矩阵;向量化短文本文档并度量两两文档间相似性,得到虚拟长文档集合;利用TF‑IWF词权重度量方法,在虚拟长文档集合上构建虚拟辅助的词‑文档矩阵;合并两个矩阵为混合矩阵;构建词‑词语义相似矩阵、文档‑文档语义相似矩阵,进而构建词‑词语义关系正则项、文档‑文档语义关系正则项;得到TRNMF模型,通过分解损失函数值,获得最优的词‑话题潜在特征矩阵、话题‑文档潜在特征矩阵,发现短文本主题分布情况。
搜索关键词: 基于 扩充 表示 相似 双向 约束 文本 主题 发现 方法 系统
【主权项】:
1.一种基于自扩充表示和相似双向约束的短文本主题发现方法,其步骤包括:基于TF‑IWF词权重度量方法,在原始短文本文档数据集上构建待挖掘主题的词‑文档矩阵;向量化原始短文本文档数据集中的短文本文档,再度量两两文档间相似性,从原始短文本文档数据集中为每个短文本文档选取最相关的前若干个文档来扩充当前短文本文档的表示,得到虚拟长文档集合;利用TF‑IWF词权重度量方法,在虚拟长文档集合上构建虚拟辅助的词‑文档矩阵;合并待挖掘主题的词‑文档矩阵和虚拟辅助的词‑文档矩阵为混合矩阵;构建词‑词语义相似矩阵,基于该矩阵构建词‑词语义关系正则项;构建文档‑文档语义相似矩阵,基于该矩阵构建文档‑文档语义关系正则项;基于混合矩阵、词‑词语义关系正则项、文档‑文档语义关系正则项,得到基于正则化非负矩阵分解的TRNMF模型,通过分解损失函数值,获得最优的词‑话题潜在特征矩阵、话题‑文档潜在特征矩阵,发现短文本主题分布情况。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院信息工程研究所,未经中国科学院信息工程研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810306013.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top