[发明专利]一种基于SVD近似矩阵约束的图像深度学习修复方法在审

专利信息
申请号: 201810320173.X 申请日: 2018-04-11
公开(公告)号: CN108615225A 公开(公告)日: 2018-10-02
发明(设计)人: 张根源;陆琼 申请(专利权)人: 浙江传媒学院
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 解明铠;刘静静
地址: 310018 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于SVD近似矩阵约束的图像深度学习修复方法,包括:步骤1,对待修复图像进行SVD分解,得到待修复图像的初步修复图像;步骤2,构建相似图像集合;步骤3,指定待修复图像中待修复区域,针对待修复区域边界上的每个待修复图像块,在相似图像集合中寻找和待修复图像块相似的图像块,构建相似图像块集合;步骤4,利用相似图像块集合训练深度生成神经网络模型;步骤5,以待修复图像块中的已知像素作为约束,利用深度生成神经网络模型生成待修复图像块像素;步骤6,更新待修复区域,若待修复区域为空,则修复完成;否则返回步骤3。本发明提供的图像深度学习修复方法,最终得到的修复图像在视觉上更加连续。
搜索关键词: 修复 图像 相似图像 修复区域 图像块 集合 神经网络模型 近似矩阵 构建 图像块像素 像素 学习 视觉 返回 更新
【主权项】:
1.一种基于SVD近似矩阵约束的图像深度学习修复方法,其特征在于,包括:步骤1,对待修复图像进行SVD分解,通过将相应奇异值置为零的操作,得到待修复图像的初步修复图像;步骤2,构建相似图像集合,相似图像集合中的各图像与待修复图像的初步修复图像具有相似性;步骤3,指定待修复图像中待修复区域,针对待修复区域边界上的每个待修复图像块,在相似图像集合中寻找和待修复图像块相似的图像块,相似图像块的集合构成相似图像块集合;步骤4,利用相似图像块集合训练深度生成神经网络模型;步骤5,以待修复图像块中的已知像素作为约束,利用训练好的深度生成神经网络模型生成待修复图像块像素;步骤6,更新待修复区域,若待修复区域为空,则修复完成;否则返回步骤3。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江传媒学院,未经浙江传媒学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810320173.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top