[发明专利]一种改进CHSMM的滚动轴承剩余寿命预测方法有效
申请号: | 201810325011.5 | 申请日: | 2018-04-12 |
公开(公告)号: | CN108776017B | 公开(公告)日: | 2020-04-24 |
发明(设计)人: | 白瑞林;朱朔;李新 | 申请(专利权)人: | 无锡信捷电气股份有限公司 |
主分类号: | G01M13/045 | 分类号: | G01M13/045 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 214000 江苏省无锡*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种改进CHSMM的滚动轴承剩余寿命预测方法,其特征是:先提取轴承振动数据的时域及时频域的特征向量,并采用PCA算法对特征向量进行降维;然后利用k‑means算法得到各退化状态数据,建立退化状态识别模型,并利用轴承全生命周期数据建立剩余寿命预测模型;针对状态驻留时间概率密度函数不符合实际而引起的剩余寿命预测精度低问题,将高斯混合概率密度函数引入到CHSMM中;相比基于原始CHSMM建立的剩余寿命预测模型,基于改进CHSMM建立的剩余寿命预测模型,能够更好的逼近状态驻留时间概率分布,从而可以更精确的预测轴承的剩余寿命。 | ||
搜索关键词: | 一种 改进 chsmm 滚动轴承 剩余 寿命 预测 方法 | ||
【主权项】:
1.一种改进CHSMM的滚动轴承剩余寿命预测方法,具体包括以下步骤:步骤(1):获取轴承全生命周期振动数据,进行去噪和归一化预处理;提取振动数据的时域、时频域特征向量;步骤(2):利用PCA算法对多域特征向量进行特征降维;步骤(3):将步骤(2)得到的轴承全生命周期数据分为五个退化状态,即正常状态、退化状态1、退化状态2、退化状态3、退化状态4,并用k‑means算法对全生命周期数据进行聚类分析,得到各退化状态数据;步骤(4):将高斯混合概率密度函引入到CHSMM中,得到改进后的CHSMM,利用步骤(3)得到的各退化状态数据训练出五个退化状态识别模型,作为轴承的状态分类器;步骤(5):利用步骤(2)得到的全生命周期数据训练出一个剩余寿命预测模型,得到全生命周期的状态转移概率,对于待测数据,利用步骤(1)、(2)所提方法提取其特征向量,并将其输入到步骤(4)的状态分类器中,得到轴承当前的退化状态,然后利用剩余寿命计算公式计算出轴承当前的剩余寿命。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于无锡信捷电气股份有限公司,未经无锡信捷电气股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810325011.5/,转载请声明来源钻瓜专利网。