[发明专利]一种基于深度卷积特征的指纹活性检测方法有效
申请号: | 201810341112.1 | 申请日: | 2018-04-17 |
公开(公告)号: | CN108564040B | 公开(公告)日: | 2021-06-25 |
发明(设计)人: | 张永良;李志伟;周冰;时大琼 | 申请(专利权)人: | 杭州景联文科技有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/08 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310000 浙江省杭州市萧山区*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度卷积特征的指纹活性检测方法,包括以下步骤:1)使用传统的指纹传感器录入指纹数据,并将其划分为训练集和验证集,训练集用来完成对深度网络模型的训练,验证集用来验证深度网络模型的性能;2)对采集的训练集中的指纹图片进行合理的变换,增加数据集的规模;3)标准化扩展后的训练集;4)基于残差结构和基本的卷积模块构建深度卷积神经网络;5)使用随机梯度下降法优化交叉熵损失函数,完成对深度卷积神经网络的训练;6)根据训练完成的模型,使用标准化后的指纹图片对真假指纹进行分类。本发明可以得到一个指纹活性检测模型,该模型相对于传统的基于手工特征和分类器的方法,有更加优异的性能。 | ||
搜索关键词: | 一种 基于 深度 卷积 特征 指纹 活性 检测 方法 | ||
【主权项】:
1.一种基于深度卷积特征的指纹活性检测方法,其特征在于,该检测方法包括以下步骤:1)使用传统的指纹传感器录入指纹数据,并将其划分为训练集和验证集,训练集用来完成对深度网络模型的训练,验证集用来验证深度网络模型的性能;2)对采集的训练集做合理的变换,增加数据集的规模;3)标准化扩展后的训练集;4)基于残差结构和基本的卷积模块构建深度卷积神经网络;5)使用随机梯度下降法优化交叉熵损失函数,完成对深度卷积神经网络的训练;6)根据训练完成的模型,使用标准化后的指纹图片对真假指纹进行分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州景联文科技有限公司,未经杭州景联文科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810341112.1/,转载请声明来源钻瓜专利网。