[发明专利]一种动作识别的方法和装置有效
申请号: | 201810342934.1 | 申请日: | 2018-04-17 |
公开(公告)号: | CN108596068B | 公开(公告)日: | 2022-04-19 |
发明(设计)人: | 曾铭宇;刘波;肖燕珊 | 申请(专利权)人: | 广东工业大学 |
主分类号: | G06V40/20 | 分类号: | G06V40/20;G06V20/40;G06V10/762;G06K9/62 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 罗满 |
地址: | 510060 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例公开了一种动作识别的方法和装置,利用模糊特征提取算法,从待测试的视频中提取相应的姿势向量;利用K‑means聚类算法,对所述姿势向量进行聚类分析,得到离散化的动作向量;查询预先建立的动作识别模型,以确定出所述动作向量对应的动作类型。运用模糊特征提取经由K‑means聚类处理的方式,提高了特征提取的速度。依据于近似核心极限学习机的最小偏差算法建立动作识别模型,在保持高精度的情况下,降低了计算复杂度、减少了运存损耗。并且,在进行动作识别时,直接查询该动作识别模型即可确定出动作向量对应的动作类型,极大的提高了动作识别的效率。 | ||
搜索关键词: | 一种 动作 识别 方法 装置 | ||
【主权项】:
1.一种动作识别的方法,其特征在于,包括:利用模糊特征提取算法,从待测试的视频中提取相应的姿势向量;利用K‑means聚类算法,对所述姿势向量进行聚类分析,得到离散化的动作向量;查询预先建立的动作识别模型,以确定出所述动作向量对应的动作类型;其中所述动作识别模型的建立依据于近似核心极限学习机的最小偏差算法。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810342934.1/,转载请声明来源钻瓜专利网。