[发明专利]基于深度学习的恶意代码同源判定方法在审
申请号: | 201810415056.1 | 申请日: | 2018-05-03 |
公开(公告)号: | CN108804919A | 公开(公告)日: | 2018-11-13 |
发明(设计)人: | 褚乾峰;朱信宇;许镇泉;刘功申 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06F21/56 | 分类号: | G06F21/56;G06N3/04 |
代理公司: | 上海汉声知识产权代理有限公司 31236 | 代理人: | 庄文莉 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于深度学习的恶意代码同源判定方法,包括:利用IDA工具,对于待判定的恶意代码进行反汇编,通过正则表达式匹配得到其中核心二进制内容,同时去除无用信息;接收二进制内容作为输入,利用恶意代码可视化算法,将二进制内容映射为恶意代码图像;利用恶意代码图像与标签值组成的样本集,对深度学习模型卷积神经网络进行训练,得到成熟的判定模型。接收待判定的恶意代码作为输入,完成同源判定。本发明通过恶意代码可视化算法,将同源判定任务转化为图像分类任务,结合深度学习判定模型,实现了一个可用的恶意代码同源判定方法。实现比现有系统更高判定准确率的同源判定技术。 | ||
搜索关键词: | 恶意代码 判定 同源 二进制内容 可视化 算法 学习 卷积神经网络 正则表达式 图像 任务转化 图像分类 无用信息 现有系统 反汇编 样本集 准确率 可用 去除 映射 匹配 标签 成熟 | ||
【主权项】:
1.一种基于深度学习的恶意代码同源判定方法,其特征在于,包括以下步骤:步骤S1,恶意代码预处理:对于待判定的恶意代码进行反汇编,通过正则表达式匹配得到其中核心二进制内容,同时去除无用信息;步骤S2,恶意代码可视化:接收步骤S1中得到的核心二进制内容作为输入,利用恶意代码可视化算法,将核心二进制内容映射为恶意代码图像;步骤S3,基于深度学习的同源判定:利用步骤S2中得到的恶意代码图像与标签值组成的样本集,对深度学习模型卷积神经网络进行训练,得到成熟的判定模型;接收待判定的恶意代码作为输入,完成同源判定。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810415056.1/,转载请声明来源钻瓜专利网。