[发明专利]一种基于改进Faster-R-CNN的哺乳母猪姿态识别方法有效

专利信息
申请号: 201810416468.7 申请日: 2018-05-03
公开(公告)号: CN108830144B 公开(公告)日: 2022-02-22
发明(设计)人: 薛月菊;朱勋沐;郑婵;陈鹏飞;杨晓帆 申请(专利权)人: 华南农业大学
主分类号: G06V40/10 分类号: G06V40/10;G06V10/764;G06V10/774;G06V10/70;G06V10/766;G06V10/82;G06K9/62
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 林丽明
地址: 510642 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于改进Faster‑R‑CNN的哺乳母猪姿态识别方法,包括以下步骤:S1、采集哺乳母猪的RGB‑D视频图像,并建立母猪姿态识别深度视频图像库;S2、对基础ZF网络增加深度、并引入残差结构,设计成具有高精度、实时性和鲁棒性的CNN网络结构;S3、使用设计的CNN网络结构,构建Faster‑R‑CNN模型结构,并对Faster‑R‑CNN模型结构引入Center Loss监督信号,与SoftmaxLoss联合构成分类损失函数,最终建立改进的Faster‑R‑CNN母猪姿态识别模型;S4、使用训练集训练Faster‑R‑CNN母猪姿态识别模型,使用测试集测试模型性能,最终筛选最佳性能模型,用于哺乳母猪姿态识别。
搜索关键词: 一种 基于 改进 faster cnn 哺乳 母猪 姿态 识别 方法
【主权项】:
1.一种基于改进Faster‑R‑CNN的哺乳母猪姿态识别方法,其特征在于,包括以下步骤:S1、采集哺乳母猪的RGB‑D视频图像,并建立母猪姿态识别深度视频图像库;S2、对基础ZF网络增加深度、并引入残差结构,设计成具有高精度、实时性和鲁棒性的CNN网络结构;S3、使用设计的CNN网络结构,构建Faster‑R‑CNN模型结构,并对Faster‑R‑CNN模型结构引入Center Loss监督信号,与SoftmaxLoss联合构成分类损失函数,最终建立改进的Faster‑R‑CNN母猪姿态识别模型;S4、使用训练集训练Faster‑R‑CNN母猪姿态识别模型,使用测试集测试模型性能,最终筛选最佳性能模型,用于哺乳母猪姿态识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南农业大学,未经华南农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810416468.7/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top