[发明专利]一种基于深度参数学习的最大相关主成分分析方法有效
申请号: | 201810441389.1 | 申请日: | 2018-05-10 |
公开(公告)号: | CN108734206B | 公开(公告)日: | 2020-04-14 |
发明(设计)人: | 孙艳丰;陈浩然;胡永利 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京市中闻律师事务所 11388 | 代理人: | 冯梦洪 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度参数学习的最大相关主成分分析方法,其针对具有非线性结构的高维数据能够有效地降维。这种基于深度参数学习的最大相关主成分分析方法,利用深度参数化的方法逼近未知但存在的非线性函数,把具有非线性结构的高维数据映射为具有线性结构的同维度数据,然后利用主成分分析对数据降维。 | ||
搜索关键词: | 一种 基于 深度 参数 学习 最大 相关 成分 分析 方法 | ||
【主权项】:
1.一种基于深度参数学习的最大相关主成分分析方法,其特征在于,该方法利用深度参数化的方法逼近未知但存在的非线性函数,把具有非线性结构的高维数据映射为具有线性结构的同维度数据,然后利用主成分分析对数据降维。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810441389.1/,转载请声明来源钻瓜专利网。