[发明专利]基于端到端深度集成学习网络的三维模型分类方法有效
申请号: | 201810446582.4 | 申请日: | 2018-05-11 |
公开(公告)号: | CN108596329B | 公开(公告)日: | 2020-08-07 |
发明(设计)人: | 白静;司庆龙;刘振刚 | 申请(专利权)人: | 北方民族大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G06K9/62 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 冯炳辉 |
地址: | 750021 宁夏回族*** | 国省代码: | 宁夏;64 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于端到端深度集成学习网络的三维模型分类方法,该方法是采用端到端的深度学习集成策略,输入一个三维网格模型,提取多视图表征,建立包含基学习器和集成学习器的集成深度学习网络,自动提取三维模型的复合特征,完成模型分类。实验表明,本发明方法在ModelNet10、ModelNet40、SHREC10、SHREC11、SHREC15数据集上分别取得了96.04%、92.79%、98.33%,98.44%and98.63%的分类精度。这一结果明显优于其它多视图分类算法,也初步验证了本方法的有效性。 | ||
搜索关键词: | 基于 端到端 深度 集成 学习 网络 三维 模型 分类 方法 | ||
【主权项】:
1.基于端到端深度集成学习网络的三维模型分类方法,其特征在于:该方法是采用端到端的深度学习集成策略,输入一个三维网格模型,提取多视图表征,建立包含基学习器和集成学习器的集成深度学习网络,自动提取三维模型的复合特征,完成模型分类;其包括以下步骤:S1、选用普林斯顿刚性三维模型数据集Princeton ModelNet Dataset,分别针对ModelNet10和ModelNet40,从官网选取所需数量的模型作为训练数据和测试数据,生成训练集和数据集;S2、对选取的三维模型进行二维视图渲染,构建给定mesh网格的多视图表征V={vi,1≤i≤N},其中N为视图数目;S3、构建集成深度学习网络,选择所需的基学习器,并构造集成学习器;其中,所述基学习器需要完成初始决策,综合考虑三维模型库及其对应二维视图的规模及复杂性,选择CaffeNet作为面向单个二维视图分类的深度学习模型;所述集成学习器需要完成最终决策,综合集成基于各个视图的初始决策,形成对三维模型分类的最终决策,集成学习器共包含三层,第一层为集成层,后两层为全连接层,为了避免深度学习网络训练中出现过拟合,每个全连接层后有一个Dropout层;S4、建立一个级联损失函数,有效平衡基学习器和集成学习模块的学习能力,实现复杂三维模型复合信息的有效提取;S5、扩充训练数据,减少网络的过拟合,提高预测的鲁棒性;S6、针对集成深度学习网络EnsembleNet的网络架构,通过基学习器预训、整体网络初训、集成学习器调优的步骤进行层次迭代式训练;S7、利用步骤S6中的层次迭代式训练方法,得到实验所需训练样本;S8、将训练样本输入到深度集成网络EnsembleNet,得到最后的分类准确率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北方民族大学,未经北方民族大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810446582.4/,转载请声明来源钻瓜专利网。