[发明专利]基于生成对抗网络负样本增强的人体目标跟踪方法有效
申请号: | 201810450684.3 | 申请日: | 2018-05-11 |
公开(公告)号: | CN108681774B | 公开(公告)日: | 2021-05-14 |
发明(设计)人: | 周雪;周琦栋;邹见效;徐红兵 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/04 |
代理公司: | 成都行之专利代理事务所(普通合伙) 51220 | 代理人: | 温利平;陈靓靓 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于生成对抗网络负样本增强的人体目标跟踪方法,分别对构建的DRAGAN网络模型和MDNet算法模型进行预训练,然后采用首帧标定的人体目标的目标矩形框对MDNet算法模型进行初始化,并初始化MDNet算法模型的样本队列和DRAGAN网络模型的训练集,持续采用MDNet算法模型进行跟踪;当DRAGAN网络模型完成首次更新训练后,采用其生成器网络生成一批负样本,作为MDNet算法模型更新训练时所采用的负样本的一部分,根据需要对MDNet算法模型进行更新训练,并周期性地采用根据跟踪结果得到的正样本对DRAGAN网络模型进行更新训练。本发明能够提高MDNet算法模型对人体目标跟踪的准确度,抑制跟踪漂移,增强算法鲁棒性。 | ||
搜索关键词: | 基于 生成 对抗 网络 样本 增强 人体 目标 跟踪 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810450684.3/,转载请声明来源钻瓜专利网。
- 上一篇:像素结构及其制备方法、显示面板
- 下一篇:一种电能表台区识别方法