[发明专利]一种基于深度残差学习的CT图像金属伪影去除方法在审
申请号: | 201810455197.6 | 申请日: | 2018-05-14 |
公开(公告)号: | CN108596861A | 公开(公告)日: | 2018-09-28 |
发明(设计)人: | 张煜;黄霞;王剑 | 申请(专利权)人: | 南方医科大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙) 11350 | 代理人: | 赵蕊红 |
地址: | 510515 广东省广州*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度残差学习的CT图像金属伪影去除方法,包括如下步骤:S1、采集目标对象的CT图像;S2、根据数值仿真实验,创建金属伪影的数据集;S3、将步骤S2中获得的数据集分为训练集图像和测试集图像;S4、构建深度残差学习网络;S5、将步骤S3中的训练集图像送至步骤S4构建的深度残差学习网络中训练,直至训练结束,获得已训练好的残差模型;S6、将步骤S3中的测试集图像中的每张图像输入至步骤S5中获得的残差模型中,得到每张图像对应的残差图像;S7、将步骤S3中的测试集图像中的每张图像减去步骤S6得到的残差图像,获得去除金属伪影的结果图像。该方法直接在图像域进行,不需要原始数据就能有效的去除CT图像中的金属伪影且不需要后处理。 | ||
搜索关键词: | 残差 金属伪影 去除 图像 测试集 训练集图像 残差图像 数据集 构建 学习 数值仿真实验 后处理 采集目标 结果图像 图像输入 原始数据 图像域 减去 网络 创建 | ||
【主权项】:
1.一种基于深度残差学习的CT图像金属伪影去除方法,其特征在于,依次包括如下步骤:S1、采集目标对象的CT图像;S2、利用数值仿真实验,创建金属伪影的数据集;S3、将步骤S2中获得的数据集分为训练集图像和测试集图像;S4、构建深度残差学习网络;S5、将步骤S3中的训练集图像送至步骤S4构建的深度残差学习网络中训练,直至训练结束,获得已训练好的残差模型;S6、将步骤S3中的测试集图像中的每张图像输入至步骤S5中获得的残差模型中,得到每张图像对应的残差图像;S7、将步骤S3中的测试集图像中的每张图像减去步骤S6得到的残差图像,获得去除金属伪影的结果图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南方医科大学,未经南方医科大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810455197.6/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序