[发明专利]基于D-MobileNet神经网络的图像分类方法有效
申请号: | 201810465364.5 | 申请日: | 2018-05-16 |
公开(公告)号: | CN109214406B | 公开(公告)日: | 2021-07-09 |
发明(设计)人: | 王威;邹婷;王新 | 申请(专利权)人: | 长沙理工大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 410114 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于D‑MobileNet(Dilated‑Mobilenet)神经网络图像分类的方法。通过将空洞卷积与MobileNet进行结合,通过提高高分辨率输入层的卷积核感受野,提高输出特征的质量,且不增加网络的参数数量,使得该网络结构提高分类精度。包括以下步骤:1)准备数据集;2)搭建MobileNet网络;3)搭建D‑MobileNet网络;4)超参数设置。将模型训练好后,利用训练好的卷积神经网络模型对验证集图片进行验证,完成分类预测。实验结果表明:本发明能取得比MobileNet网络更好的分类精度。 | ||
搜索关键词: | 基于 mobilenet 神经网络 图像 分类 方法 | ||
【主权项】:
1.基于D‑MobileNet(Dilated‑Mobilenet)神经网络图像分类方法,其特征在于,所述方法包括如下步骤:1)准备数据集;2)MobileNet神经网络的构建;3)D‑MobileNet神经网络的构建;4)超参数设置;准备数据集:本实验在Caltech_256数据集上进行实验,将图片转换为tfrecord的形式进行存储,并在训练和测试时对图片进行预处理,可扩大数据集图片的数量,防止过拟合;MobileNet神经网络的构建:MobileNet神经网络是以深度可分离卷积核为基本结构的28层网络的深度卷积神经网络,一个深度可分离核由深度卷积核和点卷积核组成;MobileNet神经网络包括、1层卷积层、13层深度可分离层、一个全局平均池化层和一层全连接输出层,且该网络无池化层;D‑MobileNet神经网络的构建:选定卷积层的层数,将该层数的卷积核由空洞卷积核替代(前面一两层的高分辨率输入特征的卷积层),通过提高该卷积核的感受野来提高所学习到的特征的质量,进一步提高分类准确度;优化网络超参数:对不同的mini_batch、learning_rate、momentum、训练步长等超参数进行优化。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长沙理工大学,未经长沙理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810465364.5/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序