[发明专利]基于D-MobileNet神经网络的图像分类方法有效

专利信息
申请号: 201810465364.5 申请日: 2018-05-16
公开(公告)号: CN109214406B 公开(公告)日: 2021-07-09
发明(设计)人: 王威;邹婷;王新 申请(专利权)人: 长沙理工大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 410114 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于D‑MobileNet(Dilated‑Mobilenet)神经网络图像分类的方法。通过将空洞卷积与MobileNet进行结合,通过提高高分辨率输入层的卷积核感受野,提高输出特征的质量,且不增加网络的参数数量,使得该网络结构提高分类精度。包括以下步骤:1)准备数据集;2)搭建MobileNet网络;3)搭建D‑MobileNet网络;4)超参数设置。将模型训练好后,利用训练好的卷积神经网络模型对验证集图片进行验证,完成分类预测。实验结果表明:本发明能取得比MobileNet网络更好的分类精度。
搜索关键词: 基于 mobilenet 神经网络 图像 分类 方法
【主权项】:
1.基于D‑MobileNet(Dilated‑Mobilenet)神经网络图像分类方法,其特征在于,所述方法包括如下步骤:1)准备数据集;2)MobileNet神经网络的构建;3)D‑MobileNet神经网络的构建;4)超参数设置;准备数据集:本实验在Caltech_256数据集上进行实验,将图片转换为tfrecord的形式进行存储,并在训练和测试时对图片进行预处理,可扩大数据集图片的数量,防止过拟合;MobileNet神经网络的构建:MobileNet神经网络是以深度可分离卷积核为基本结构的28层网络的深度卷积神经网络,一个深度可分离核由深度卷积核和点卷积核组成;MobileNet神经网络包括、1层卷积层、13层深度可分离层、一个全局平均池化层和一层全连接输出层,且该网络无池化层;D‑MobileNet神经网络的构建:选定卷积层的层数,将该层数的卷积核由空洞卷积核替代(前面一两层的高分辨率输入特征的卷积层),通过提高该卷积核的感受野来提高所学习到的特征的质量,进一步提高分类准确度;优化网络超参数:对不同的mini_batch、learning_rate、momentum、训练步长等超参数进行优化。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长沙理工大学,未经长沙理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810465364.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top