[发明专利]基于视频流数据的烟雾识别方法有效

专利信息
申请号: 201810483298.4 申请日: 2018-05-18
公开(公告)号: CN108830161B 公开(公告)日: 2021-04-20
发明(设计)人: 杨贤文 申请(专利权)人: 武汉倍特威视系统有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06T7/20
代理公司: 武汉维创品智专利代理事务所(特殊普通合伙) 42239 代理人: 余丽霞
地址: 430074 湖北省武汉市东湖新技术开*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于视频流数据的烟雾识别方法,包括以下步骤:视频流数据获取;运动目标提取;过滤夜晚、过滤下雨及大雾天气、过滤摄像机抖动转动;模糊度分析;离散性匹配;扩散方向匹配;运动速度匹配;通过神经网络进行烟雾特征模型匹配。本发明采用基于视频流数据的烟雾识别方法,根据烟雾持续性的特征,通过视频流数据实时获取活动目标,并将其进行多种动态特征和神经网络特征识别,提高烟雾识别的准确度,能有效避免误报警和漏报警。
搜索关键词: 基于 视频 数据 烟雾 识别 方法
【主权项】:
1.基于视频流数据的烟雾识别方法,其特征在于,包括以下步骤:步骤一、采集视频监控区的视频流数据,并对视频流数据中的视频图像进行逐帧解码,转化为Lab空间表示,使其转换为相应的彩色图像;步骤二、对视频图像中的运动目标采用背景帧分法进行提取,获得有运动目标的前景图片;步骤三:截取步骤二中获取的运动目标的前景图片,过滤夜晚、过滤下雨及大雾天气、过滤摄像机抖动转动的情况,若检测到这些情况中任一种情况时,直接忽略返回步骤二;反之,进入下一步;步骤四:对满足步骤三的前景图片采用reblur二次模糊算法进行模糊度分析,比较原图和模糊后的图片相邻像素值的差别大小,若差别大,则判断为清晰图片,直接忽略,若差别小;则判断为模糊图片,进入下一步;步骤五:将步骤四中满足模糊度的前景图片的烟雾目标进行离散性匹配,同一烟雾目标累计观察N帧,并获取在N帧累加区域的最大活动轨迹,然后通过历史活动轨迹和最大活动轨迹比值计算离散度,离散度越高离散性越低,离散度越低离散性越高,若离散度大于M值,则排除目标的前景图片,返回步骤二,反之,则进入下一步;其中,M值表示离散度,M=(0,10],值越大表示目标对象在空间分布上越集中;所述历史活动轨迹为活动目标的过去的空间活动坐标范围;所述最大活动轨迹为活动目标在N帧累加区域的空间活动坐标范围;步骤六、对步骤五中满足离散度的前景图片中烟雾目标进行扩散方向匹配,对同一烟雾目标累计观察N帧,并进行帧内对比,若发现目标出现向下移动的特征则排除,返回步骤二,反之,则进入下一步;步骤七、对步骤六中满足扩散方向的前景图片中烟雾目标进行运动速度匹配,对同一烟雾目标累计观察N帧,并通过多帧对比计算该目标的运动速度,若目标运动速度高于经验值S,则忽略返回步骤二,反之,则判断前景图片具有烟雾通用特质,并进入下一步;其中,目标运动速度=两帧之间的距离像素差/两帧间时间;经验值S反映烟雾的较慢的运动速度,S值约1~50之间;步骤八:对步骤七中具有满足烟雾通用特质的目标的前景图片通过神经网络进行烟雾特征模型匹配,如匹配大于相似度L,则输出识别到烟雾,反之则返回步骤二;其中L=[0,1],精度要求越高,则越接近1;其中,N表示目标的观察区间跨度的帧数,N=[1,100],值越大观察时间越长、灵敏度越低。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉倍特威视系统有限公司,未经武汉倍特威视系统有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810483298.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top