[发明专利]基于神经网络的多模态互补服装搭配方法、系统及介质有效
申请号: | 201810501840.4 | 申请日: | 2018-05-23 |
公开(公告)号: | CN108960959B | 公开(公告)日: | 2020-05-12 |
发明(设计)人: | 刘金环;宋雪萌;马军;甘甜;聂礼强 | 申请(专利权)人: | 山东大学 |
主分类号: | G06Q30/06 | 分类号: | G06Q30/06;G06N3/02 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 黄海丽 |
地址: | 250101 *** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于神经网络的多模态互补服装搭配方法、系统及介质,从服装的图片中获取视觉特征,从服装的文字描述中获取文本特征;利用自编码器学习不同服装的视觉特征和文本特征的兼容性空间,得到视觉特征的隐含表示和文本特征的隐含表示;建立重建向量分别与输入特征之间的关系模型;建立服装兼容性模型;然后,基于服装兼容性模型,采用贝叶斯个性化排序算法构建兼容性偏好模型;建立视觉特征隐含表示和文本特征隐含表示的一致性模型;然后,建立服装的多模态隐含特征一致性模型;构建基于深度神经网络的多模态互补服装搭配模型;对已经构建的多模态互补服装搭配模型进行训练;利用已经训练好的多模态互补服装搭配模型进行服装搭配推荐。 | ||
搜索关键词: | 基于 神经网络 多模态 互补 服装 搭配 方法 系统 介质 | ||
【主权项】:
1.基于神经网络的多模态互补服装搭配方法,其特征是,包括:步骤(1):从服装的图片中获取视觉特征,同时,从服装的文字描述中获取文本特征;步骤(2):利用自编码器学习不同服装的视觉特征和文本特征的兼容性空间,得到视觉特征的隐含表示和文本特征的隐含表示;步骤(3):利用解码器将步骤(2)得到的视觉特征的隐含表示和文本特征的隐含表示解码为重建向量;建立重建向量分别与输入特征之间的关系模型;步骤(4):基于步骤(2)得到的视觉特征的隐含表示和文本特征的隐含表示,建立服装兼容性模型;然后,基于服装兼容性模型,采用贝叶斯个性化排序算法构建兼容性偏好模型;步骤(5):基于步骤(2)得到的视觉特征的隐含表示和文本特征的隐含表示,建立视觉特征隐含表示和文本特征隐含表示的一致性模型;然后,建立服装的多模态隐含特征一致性模型;步骤(6):基于步骤(3)、步骤(4)和步骤(5)的计算结果,构建基于深度神经网络的多模态互补服装搭配模型;对已经构建的多模态互补服装搭配模型进行训练;利用已经训练好的多模态互补服装搭配模型进行服装搭配推荐。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810501840.4/,转载请声明来源钻瓜专利网。
- 上一篇:物品推荐方法和装置
- 下一篇:一种处理高并发数据的方法及服务器